if the diameter is 20, the its radius must be half that or 10.
![\textit{area of a sector of a circle}\\\\ A=\cfrac{\theta \pi r^2}{360}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ A=5\pi \\ r=10 \end{cases}\implies \begin{array}{llll} 5\pi =\cfrac{\theta \pi (10)^2}{360}\implies 5\pi =\cfrac{5\pi \theta }{18} \\\\\\ \cfrac{5\pi }{5\pi }=\cfrac{\theta }{18}\implies 1=\cfrac{\theta }{18}\implies 18=\theta \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20sector%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20r%5E2%7D%7B360%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20%5Ctheta%20%3D%5Cstackrel%7Bdegrees%7D%7Bangle%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20A%3D5%5Cpi%20%5C%5C%20r%3D10%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%205%5Cpi%20%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20%2810%29%5E2%7D%7B360%7D%5Cimplies%205%5Cpi%20%3D%5Ccfrac%7B5%5Cpi%20%5Ctheta%20%7D%7B18%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B5%5Cpi%20%7D%7B5%5Cpi%20%7D%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%201%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%2018%3D%5Ctheta%20%5Cend%7Barray%7D)
Add 6.25 from 5 then you get 11.25. then you add 3b to 2b then you get 5b. the. divide 5b to 11.25 to get the answer
Answer:

.
Step-by-step explanation:
Arithmetic sequence

.
First step, find its difference



.
So, we get


.
Finally, Let's find the 75th term




Simplifying
15 + -5(4x + -7) = 50
Reorder the terms:
15 + -5(-7 + 4x) = 50
15 + (-7 * -5 + 4x * -5) = 50
15 + (35 + -20x) = 50
Combine like terms: 15 + 35 = 50
50 + -20x = 50
Add '-50' to each side of the equation.
50 + -50 + -20x = 50 + -50
Combine like terms: 50 + -50 = 0
0 + -20x = 50 + -50
-20x = 50 + -50
Combine like terms: 50 + -50 = 0
-20x = 0
Solving
-20x = 0
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Divide each side by '-20'.
x = 0.0
Simplifying
x = 0.0
Answer:
b. you sold 17
c. your friend sold 25
Step-by-step explanation:
you=y your friend=x
y=x-8
42=x +y
42=x+(x-8)
42=x+x-8
42=2x-8
50=2x
25=x
Use x to solve for y...
y=25-8
y=17