Answer:
I think d.<VUS=~<RST.IT SAYS if two triangle are conqruent the respective side will be equal.
Use the chain rule.
Let u = 25sin²(x), such that dy/dx = dy/du · du/dx


Answer:
radius
Step-by-step explanation:
Answer:
Dimensions: 
Perimiter: 
Minimum perimeter: [16,16]
Step-by-step explanation:
This is a problem of optimization with constraints.
We can define the rectangle with two sides of size "a" and two sides of size "b".
The area of the rectangle can be defined then as:

This is the constraint.
To simplify and as we have only one constraint and two variables, we can express a in function of b as:

The function we want to optimize is the diameter.
We can express the diameter as:

To optimize we can derive the function and equal to zero.

The minimum perimiter happens when both sides are of size 16 (a square).
<span><span>
The correct answers are:</span><span>
(1) The vertical asymptote is x = 0
(2) The horizontal asymptote is y = 0
</span><span>
Explanation:</span><span>(1) To find the vertical asymptote, put the denominator of the rational function equals to zero.
Rational Function = g(x) = </span></span>

<span>
Denominator = x = 0
Hence the vertical asymptote is x = 0.
(2) To find the horizontal asymptote, check the power of x in numerator against the power of x in denominator as follows:
Given function = g(x) = </span>

<span>
We can write it as:
g(x) = </span>

<span>
If power of x in numerator is less than the power of x in denomenator, then the horizontal asymptote will be y=0.
If power of x in numerator is equal to the power of x in denomenator, then the horizontal asymptote will be y=(co-efficient in numerator)/(co-efficient in denomenator).
If power of x in numerator is greater than the power of x in denomenator, then there will be no horizontal asymptote.
In above case, 0 < 1, therefore, the horizontal asymptote is y = 0
</span>