1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
3 years ago
15

12 pounds of rock costs $35.40, How many pounds of rock could you get for $44.25?

Mathematics
1 answer:
AfilCa [17]3 years ago
7 0

Step-by-step explanation:

35.40 ÷12 = 2.95 per pound

44.25 ÷ 2.95 = 15.15 pounds

You might be interested in
Your classmate is unsure about how to use side lengths
DENIUS [597]

Answer:

you look at the lengths some triagles have small parallel lines anè or two of them to determine if they are equal or different from one another

3 0
3 years ago
What is the final amount if 975 is increased by 1% followed by a further 9% increase?
Verdich [7]

Answer:

1073.38

Step-by-step explanation:

975 × 0.01 = 9.75

9.75 + 975 = 984.75

984.75 × 0.09 = 88.6275

88.6275 + 984.75 = <u>1073.38</u>

3 0
3 years ago
Lenovo uses the​ zx-81 chip in some of its laptop computers. the prices for the chip during the last 12 months were as​ follows:
Stella [2.4K]
Given the table below of the prices for the Lenovo zx-81 chip during the last 12 months

\begin{tabular}&#10;{|c|c|c|c|}&#10;Month&Price per Chip&Month&Price per Chip\\[1ex]&#10;January&\$1.90&July&\$1.80\\&#10;February&\$1.61&August&\$1.83\\&#10;March&\$1.60&September&\$1.60\\&#10;April&\$1.85&October&\$1.57\\&#10;May&\$1.90&November&\$1.62\\&#10;June&\$1.95&December&\$1.75&#10;\end{tabular}

The forcast for a period F_{t+1} is given by the formular

F_{t+1}=\alpha A_t+(1-\alpha)F_t

where A_t is the actual value for the preceding period and F_t is the forcast for the preceding period.

Part 1A:
Given <span>α ​= 0.1 and the initial forecast for october of ​$1.83, the actual value for october is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha A_{10}+(1-\alpha)F_{10} \\  \\ =0.1(1.57)+(1-0.1)(1.83) \\  \\ =0.157+0.9(1.83)=0.157+1.647 \\  \\ =1.804

Therefore, the foreast for period 11 is $1.80


Part 1B:

</span>Given <span>α ​= 0.1 and the forecast for november of ​$1.80, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.1(1.62)+(1-0.1)(1.80) \\  \\ &#10;=0.162+0.9(1.80)=0.162+1.62 \\  \\ =1.782

Therefore, the foreast for period 12 is $1.78</span>



Part 2A:

Given <span>α ​= 0.3 and the initial forecast for october of ​$1.76, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.3(1.57)+(1-0.3)(1.76) \\  \\ &#10;=0.471+0.7(1.76)=0.471+1.232 \\  \\ =1.703

Therefore, the foreast for period 11 is $1.70

</span>
<span><span>Part 2B:

</span>Given <span>α ​= 0.3 and the forecast for November of ​$1.70, the actual value for november is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.3(1.62)+(1-0.3)(1.70) \\  \\ &#10;=0.486+0.7(1.70)=0.486+1.19 \\  \\ =1.676

Therefore, the foreast for period 12 is $1.68



</span></span>
<span>Part 3A:

Given <span>α ​= 0.5 and the initial forecast for october of ​$1.72, the actual value for October is $1.57.

Thus, the forecast for period 11 is given by:

F_{11}=\alpha&#10; A_{10}+(1-\alpha)F_{10} \\  \\ =0.5(1.57)+(1-0.5)(1.72) \\  \\ &#10;=0.785+0.5(1.72)=0.785+0.86 \\  \\ =1.645

Therefore, the forecast for period 11 is $1.65

</span>
<span><span>Part 3B:

</span>Given <span>α ​= 0.5 and the forecast for November of ​$1.65, the actual value for November is $1.62

Thus, the forecast for period 12 is given by:

F_{12}=\alpha&#10; A_{11}+(1-\alpha)F_{11} \\  \\ =0.5(1.62)+(1-0.5)(1.65) \\  \\ &#10;=0.81+0.5(1.65)=0.81+0.825 \\  \\ =1.635

Therefore, the forecast for period 12 is $1.64



Part 4:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span></span></span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.83, $1.80, $1.78

Thus, the mean absolute deviation is given by:

\frac{|1.57-1.83|+|1.62-1.80|+|1.75-1.78|}{3} = \frac{|-0.26|+|-0.18|+|-0.03|}{3}  \\  \\ = \frac{0.26+0.18+0.03}{3} = \frac{0.47}{3} \approx0.16

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.1 of October, November and December is given by: 0.157



</span><span><span>Part 5:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.3, we obtained that the forcasted values of october, november and december are: $1.76, $1.70, $1.68

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.76|+|1.62-1.70|+|1.75-1.68|}{3} = &#10;\frac{|-0.17|+|-0.08|+|-0.07|}{3}  \\  \\ = \frac{0.17+0.08+0.07}{3} = &#10;\frac{0.32}{3} \approx0.107

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.3 of October, November and December is given by: 0.107



</span></span>
<span><span>Part 6:

The mean absolute deviation of a forecast is given by the summation of the absolute values of the actual values minus the forecasted values all divided by the number of items.

Thus, given that the actual values of october, november and december are: $1.57, $1.62, $1.75

using </span><span>α = 0.5, we obtained that the forcasted values of october, november and december are: $1.72, $1.65, $1.64

Thus, the mean absolute deviation is given by:

&#10; \frac{|1.57-1.72|+|1.62-1.65|+|1.75-1.64|}{3} = &#10;\frac{|-0.15|+|-0.03|+|0.11|}{3}  \\  \\ = \frac{0.15+0.03+0.11}{3} = &#10;\frac{29}{3} \approx0.097

Therefore, the mean absolute deviation </span><span>using exponential smoothing where α ​= 0.5 of October, November and December is given by: 0.097</span></span>
5 0
3 years ago
5x+7y=10<br> 8x-5y=2<br> Please help!
Mrrafil [7]
(x,y)=(64/81, 70/81) I can provide a description if needed. I used the process of elimination. 
5 0
3 years ago
What is the range for the set of data? 6, 7, 10, 12, 12, 13​
seropon [69]
The range of the data is 6-13
6 0
3 years ago
Read 2 more answers
Other questions:
  • The ratio of Holly's age to that her aunt is 4:9. When holly was born her aunt was 15 years old. How old is holly's aunt now?
    14·1 answer
  • Math help thank you guys.
    7·1 answer
  • What is 8 divided by 2.5 (In fraction form)
    7·1 answer
  • What is the volume of the cone?.
    8·1 answer
  • Does 10p/2q = 5p/q<br> I think it is not equal but it doesn't seem right.
    13·1 answer
  • What is 1.5 divided by 1/6?
    10·1 answer
  • If you wanted to make a game where you pay $5 if you can't guess a random dogs weight within 16lbs what payout should you offer
    10·1 answer
  • The water level in Rocky's lake changes on an average of -7/16 every 3 years. Based on the rate of the level, how much will the
    12·1 answer
  • Examine the last statements made by the Dormouse:
    8·1 answer
  • At a sale, coats were sold for $104 each. If the coats originally cost $160 each, what
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!