To round this we have to go to the thousands place since the thousands place in this question is 8 its closer to 10 so the answer is 10k or 10,000
Answer:
35 is the answer
Step-by-step explanation:
it just is yeyeye
Answer
(a) 
(b) 
Step-by-step explanation:
(a)
δ(t)
where δ(t) = unit impulse function
The Laplace transform of function f(t) is given as:

where a = ∞
=> 
where d(t) = δ(t)
=> 
Integrating, we have:
=> 
Inputting the boundary conditions t = a = ∞, t = 0:

(b) 
The Laplace transform of function f(t) is given as:



Integrating, we have:
![F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.](https://tex.z-dn.net/?f=F%28s%29%20%3D%20%5B%5Cfrac%7B-e%5E%7B-%28s%20%2B%201%29t%7D%7D%20%7Bs%20%2B%201%7D%20-%20%5Cfrac%7B4e%5E%7B-%28s%20%2B%204%29%7D%7D%7Bs%20%2B%204%7D%20-%20%5Cfrac%7B%283%28s%20%2B%201%29t%20%2B%201%29e%5E%7B-3%28s%20%2B%201%29t%7D%29%7D%7B9%28s%20%2B%201%29%5E2%7D%5D%20%5Cleft%20%5C%7B%20%7B%7Ba%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Inputting the boundary condition, t = a = ∞, t = 0:

Answer:
x-intercept = 3.6
y-intercept = -1.2
Step-by-step explanation:
You're almost finished.
(sin/cos) times cos = 0
Look at the left side. You could write it as (sin x cos) / cos = 0
and simply divide numerator and denominator by the cosine (cancel it).
Then what do you have left ? . . . <u>sin(x) = 0</u> Do I need to finish this for you ?