Missing part of the question
Determine the number of handshakes, i, that will occur for each number of people, n, in a particular room. (people)
Answer:

Step-by-step explanation:
Given
For 5 people

Using the given instance of 5 people, the number of handshakes can be represented as:

The above sequence is an arithmetic sequence and the total number of handshakes is the sum of n terms of the sequence.

Where
--- The first term
--- The last term
So:


Answer:
-18
Step-by-step explanation:
Just divide 948.6 m^3 by 3.1 m and 5.1 m to get 60 m
53,278 can be written as:
50,000 + 3,000 + 200 + 70 + 8
Divide distance walked by time:
2 1/4 miles / 2/3 hours = 3 3/8 miles per hour