Answer:
lol
Step-by-step explanation:
open your mouth and make sound come out
3x+7=-x-1
move -x to the other side
sign changes from -x to +x
3x+x+7=-x+x-1
3x+x+7=-1
4x+7=-1
move 7 to the other side
sign changes from +7 to -7
4x+7-7=-1-7
4x=-8
Divide by 4 for both sides
4x/4=-8/4
Answer: x=-2
Answer:
f'(x) > 0 on
and f'(x)<0 on
Step-by-step explanation:
1) To find and interval where any given function is increasing, the first derivative of its function must be greater than zero:

To find its decreasing interval :

2) Then let's find the critical point of this function:
![f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}[6-2^{2x}]=\frac{\mathrm{d} }{\mathrm{d}x}[6]-\frac{\mathrm{d}}{\mathrm{d}x}[2^{2x}]=0-[ln(2)*2^{2x}*\frac{\mathrm{d}}{\mathrm{d}x}[2x]=-ln(2)*2^{2x}*2=-ln2*2^{2x+1\Rightarrow }f'(x)=-ln(2)*2^{2x}*2\\-ln(2)*2^{2x+1}=-2x^{2x}(ln(x)+1)=0](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%5B6-2%5E%7B2x%7D%5D%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7Dx%7D%5B6%5D-%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dx%7D%5B2%5E%7B2x%7D%5D%3D0-%5Bln%282%29%2A2%5E%7B2x%7D%2A%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dx%7D%5B2x%5D%3D-ln%282%29%2A2%5E%7B2x%7D%2A2%3D-ln2%2A2%5E%7B2x%2B1%5CRightarrow%20%7Df%27%28x%29%3D-ln%282%29%2A2%5E%7B2x%7D%2A2%5C%5C-ln%282%29%2A2%5E%7B2x%2B1%7D%3D-2x%5E%7B2x%7D%28ln%28x%29%2B1%29%3D0)
2.2 Solving for x this equation, this will lead us to one critical point since x' is not defined for Real set, and x''
≈0.37 for e≈2.72

3) Finally, check it out the critical point, i.e. f'(x) >0 and below f'(x)<0.
Put the numbers in order.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 2: Find the median.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 3: Place parentheses around the numbers above and below the median.
Not necessary statistically, but it makes Q1 and Q3 easier to spot.
(1, 2, 5, 6, 7), 9, (12, 15, 18, 19, 27).
Step 4: Find Q1 and Q3
Think of Q1 as a median in the lower half of the data and think of Q3 as a median for the upper half of data.
(1, 2, 5, 6, 7), 9, ( 12, 15, 18, 19, 27). Q1 = 5 and Q3 = 18.
Step 5: Subtract Q1 from Q3 to find the interquartile range.
18 – 5 = 13.