1 lb is 16 oz if each can weighs 14.4 oz then there are 20 cans
Answer:
False, it translates to an inequality.
Answer:
1,440
Step-by-step explanation:
if first two digits must be odd, then there are 4x3 or 12 combinations for that
if the next three digits can be even or odd but not repeats then there can be 6 (two odds remaining plus four evens) x 5 x 4 = 120
120 x 12 = 1,440
Answer:
Since we can't assume that the distribution of X is the normal then we need to apply the central limit theorem in order to approximate the
with a normal distribution. And we need to check if n>30 since we need a sample size large as possible to assume this.

Based on this rule we can conclude:
a. n = 14 b. n = 19 c. n = 45 d. n = 55 e. n = 110 f. n = 440
Only for c. n = 45 d. n = 55 e. n = 110 f. n = 440 we can ensure that we can apply the normal approximation for the sample mean
for n=14 or n =19 since the sample size is <30 we don't have enough evidence to conclude that the sample mean is normally distributed
Step-by-step explanation:
For this case we know that for a random variable X we have the following parameters given:

Since we can't assume that the distribution of X is the normal then we need to apply the central limit theorem in order to approximate the
with a normal distribution. And we need to check if n>30 since we need a sample size large as possible to assume this.

Based on this rule we can conclude:
a. n = 14 b. n = 19 c. n = 45 d. n = 55 e. n = 110 f. n = 440
Only for c. n = 45 d. n = 55 e. n = 110 f. n = 440 we can ensure that we can apply the normal approximation for the sample mean
for n=14 or n =19 since the sample size is <30 we don't have enough evidence to conclude that the sample mean is normally distributed