Answer:
It would he in quadrant 4
Step-by-step explanation:
First off you should know 2 represents x and -6 represents y since it is (x,y). To graph this we must find positive 2 on the x line which in the horizontal line. Then we must point -6. Since this term is negative, we move 6 points down since down is negative and up is positive.
Answer:
27
Step-by-step explanation:
30%=0.3 in decimal form
90×0.3=27
It is the extent to which a distribution is stretched
Answer:
y = - 16t² + 55.6t + 6
Step-by-step explanation:
Using y - y₀ = vt - 1/2gt² where g = 32 ft/s², and v the velocity of the football
So y = y₀ + vt - 1/2 × (32 ft/s²)t²
y = y₀ + vt - 16t² where y₀ = 6.5 ft
y = 6 + vt - 16t²
Now, when t = 3.5 s, that is the time the teammate catches the ball after the quarterback throws it, y = 5 ft. Substituting these into the equation, we have
5 = 6.5 + v(3.5 s) - 16(3.5 s)²
5 = 6.5 + 3.5v - 196
collecting like terms, we have
5 - 6.5 + 196 = 3.5v
194.5 = 3.5v
v = 194.5/3.5 = 55.57 ft/s ≅ 55.6 ft/s
So, substituting v into y, our quadratic model is
y = 6 + 55.6t - 16t²
re-arranging, we have
y = - 16t² + 55.6t + 6
Answer: No, the money won't be enough to buy the car
Step-by-step explanation:
you plan on buying yourself a new $20,000 car on graduation day and graduation day is 24 months time. If you invest $300 a month for the next 24 months.
The principal amount, p = 300
He is earning 4% a month, it means that it was compounded once in four months. This also means that it was compounded quarterly. So
n = 4
The rate at which the principal was compounded is 4%. So
r = 4/100 = 0.04
It was compounded for a total of 24 months. This is equivalent to 2 years. So
n = 2
The formula for compound interest is
A = P(1+r/n)^nt
A = total amount that would be compounded at the end of n years.
A = 300(1 + (0.04/4)/4)^4×2
A = 300(1 + 0.01)^8
A = 300(1.01)^8
A = $324.857
The total amount at the end of 24 months is below the cost of the car which is $20000. So he won't have enough money to buy the car