3)
![\begin{array}{c|c}\underline{Statement}&\underline{Reason}\\ 1.AY=BX&\text{1. Given}\\ 2.AB \cong AB&\text{2. Reflexive Property}\\ 3. AD || BC&\text{3. Property of a square}\\ 4. \angle ABE \cong \angle AXB&\text{4. Alternate Interior Angles}\\ 5. \angle BAY \cong \angle BYA&\text{5. Alternate Interior Angles}\\6. \triangle BAX \cong \triangle ABY&\text{6. Angle-Side-Angle Theorem}\\ 7. AX \cong BY&\text{7. CPCTC}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bc%7Cc%7D%5Cunderline%7BStatement%7D%26%5Cunderline%7BReason%7D%5C%5C%201.AY%3DBX%26%5Ctext%7B1.%20Given%7D%5C%5C%202.AB%20%5Ccong%20AB%26%5Ctext%7B2.%20Reflexive%20Property%7D%5C%5C%203.%20AD%20%7C%7C%20BC%26%5Ctext%7B3.%20Property%20of%20a%20square%7D%5C%5C%204.%20%5Cangle%20ABE%20%5Ccong%20%5Cangle%20AXB%26%5Ctext%7B4.%20Alternate%20Interior%20Angles%7D%5C%5C%205.%20%5Cangle%20BAY%20%5Ccong%20%5Cangle%20BYA%26%5Ctext%7B5.%20Alternate%20Interior%20Angles%7D%5C%5C6.%20%5Ctriangle%20BAX%20%5Ccong%20%5Ctriangle%20ABY%26%5Ctext%7B6.%20Angle-Side-Angle%20Theorem%7D%5C%5C%207.%20AX%20%5Ccong%20BY%26%5Ctext%7B7.%20CPCTC%7D%5C%5C%5Cend%7Barray%7D)
*************************************************************************************
6)
![\begin{array}{c|c}\underline{Statement}&\underline{Reason}\\1. AB=CF&\text{1. Given}\\2.AB+BF=A'F&\text{2. Segment Addition Postulate}\\3.CF+BF=A'F&\text{3. Substitution Property}\\4.CF+BF+BC&\text{4. Segment Addition Postulate}\\5.A'F=BC&\text{5. Transitive Property}\\6. \angle AFE = \angle DBC&\text{6. Given}\\7. EF = BD&\text{7. Given}\\8. \triangle AFE \cong \triangle CBD&\text{8. Side-Angle-Side Theorem}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bc%7Cc%7D%5Cunderline%7BStatement%7D%26%5Cunderline%7BReason%7D%5C%5C1.%20AB%3DCF%26%5Ctext%7B1.%20Given%7D%5C%5C2.AB%2BBF%3DA%27F%26%5Ctext%7B2.%20Segment%20Addition%20Postulate%7D%5C%5C3.CF%2BBF%3DA%27F%26%5Ctext%7B3.%20Substitution%20Property%7D%5C%5C4.CF%2BBF%2BBC%26%5Ctext%7B4.%20Segment%20Addition%20Postulate%7D%5C%5C5.A%27F%3DBC%26%5Ctext%7B5.%20Transitive%20Property%7D%5C%5C6.%20%5Cangle%20AFE%20%3D%20%5Cangle%20DBC%26%5Ctext%7B6.%20Given%7D%5C%5C7.%20EF%20%3D%20BD%26%5Ctext%7B7.%20Given%7D%5C%5C8.%20%5Ctriangle%20AFE%20%5Ccong%20%5Ctriangle%20CBD%26%5Ctext%7B8.%20Side-Angle-Side%20Theorem%7D%5C%5C%5Cend%7Barray%7D)
*************************************************************************************
7)
![\begin{array}{c|c}\underline{Statement}&\underline{Reason}\\\text{1.AC bisects }\angle BAD&\text{1. Given}\\2. \angle BAC \cong \angle DAC&\text{2. Property of angle bisector}\\3.AC = AC&\text{3. Reflexive Property}&4. \angle ACB \cong \angle ACD&\text{4. Property of angle bisector}\\5. \triangle ABC \cong \triangle ADC&\text{5. Angle-Side-Angle Theorem}\\6.BC=CD&\text{6. CPCTC}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bc%7Cc%7D%5Cunderline%7BStatement%7D%26%5Cunderline%7BReason%7D%5C%5C%5Ctext%7B1.AC%20bisects%20%7D%5Cangle%20BAD%26%5Ctext%7B1.%20Given%7D%5C%5C2.%20%5Cangle%20BAC%20%5Ccong%20%5Cangle%20DAC%26%5Ctext%7B2.%20Property%20of%20angle%20bisector%7D%5C%5C3.AC%20%3D%20AC%26%5Ctext%7B3.%20Reflexive%20Property%7D%264.%20%5Cangle%20ACB%20%5Ccong%20%5Cangle%20ACD%26%5Ctext%7B4.%20Property%20of%20angle%20bisector%7D%5C%5C5.%20%5Ctriangle%20ABC%20%5Ccong%20%5Ctriangle%20ADC%26%5Ctext%7B5.%20Angle-Side-Angle%20Theorem%7D%5C%5C6.BC%3DCD%26%5Ctext%7B6.%20CPCTC%7D%5C%5C%5Cend%7Barray%7D)
Answer:
work is shown and pictured
Answer:
5.00
Step-by-step explanation:
answer
Answer:
1. ≈ 12.85
2. 15
3. -38
4. 41 miles
5. 88
Step-by-step explanation:
Answer:
There are 6 ways we can roll doubles out of a possible 36 rolls (6 x 6), for a probability of 6/36, or 1/6, on any roll of two fair dice. So you have a 16.7% probability of rolling doubles with 2 fair six-sided dice
Step-by-step explanation: