Answer:
A) Any butterfly allele that allowed milkweed toxin storage would be likely to persist because butterflies that had it were more likely to survive.
Explanation:
Butterflies are natural preys to birds. Over time, some butterflies evolved adaptive strategy such as developing an allele which enables storage of toxin from milkweed as a form of defense mechanism. This stored toxins repel birds from eating the butterflies having this allele giving rise to the survival of these butterflies overtime. Butterflies that had it are likely to be highly favored for survival against predatory birds, while those butterflies without this allele are likely to be heavily preyed upon by birds.
The cells show characteristics of tumors.
Tumor cells have the ability to grow and proliferate in absence of adhesion or anchoring. This is particularly helpful during metastasis when a cancer cell travels through the bloodstream to another location.
<span>
A cancerous cell has a number of mutations that regulate cell division. In addition, they exhibit impairment in DNA repair system. Therefore, cancer cell divided fast. Since the DNA repair system is nonfictional, the cells do not pause division to repair the mutation.</span>
Answer:
It recognizes and binds to a pair of "mismatched" nucleotides, preventing their translation.
Explanation:
Mut L protein is involved in mismatch DNA repair. MutL protein is complexed with MutS protein and the MutL-MutS complex recognizes all the mismatched base pairs present in the newly formed DNA strand. The complex can not recognize the "C-C" pairs. MutH protein joins the complex.
The MutH protein also has a site-specific endonuclease activity and cleaves the unmethylated DNA strand towards the 5' end of the guanine base in the GATC sequence to mark the strand for DNA repair. In this way, MutL protein, along with MutS and MutH proteins mark the mismatched DNA bases for repair so that they are not translated into a faulty protein.