Answer:
a. 80.83 ft b. 40.42 ft
Step-by-step explanation:
Let h = height of pole = 70 ft, L = length of cable and x = distance of cable on ground to pole and Ф = angle between cable and ground.
a) How long is the cable?
Since L, h and x form a right-angled triangle with angle Ф and h being the opposite side to Ф and L being the hypotenuse side, by trigonometric ratios,
sinФ = h/L
L = h/sinФ
L = 70 ft/sin60°
L = 70 ft/0.8660
L = 80.83 ft
b) How far from the pole should the cable be attached to the ground?
Since L, h and x form a right-angled triangle with angle Ф and h being the opposite side to Ф and x being the adjacent side, by trigonometric ratios,
tanФ = h/x
x = h/tanФ
x = 70 ft/tan60°
x = 70 ft/1.7321
x = 40.42 ft