Answer:
3/25
Step-by-step explanation:
Steps to find the equation
1. Find the slope
2. Insert slope into the general equation
3. Find y-intercept
4. Insert -intercept into the equation found in step 2
And you get the equation of the line
----------------------------------------------------------------------------------------------
Find the slope
----------------------------------------------------------------------------------------------
2y - x = 4
----------------------------------------------------------------------------------------------
Rewrite into the form y = mx + c
----------------------------------------------------------------------------------------------
2y = x + 4
y = 1/2 x + 2
Slope = 1/2
Perpendicular slope = -2 (negative reciprocal)
----------------------------------------------------------------------------------------------
Insert slope into the equation
----------------------------------------------------------------------------------------------
y = mx + c
y = -2x + c
----------------------------------------------------------------------------------------------
Find y-intercept
----------------------------------------------------------------------------------------------
y = -2x + c
At point (1, 2)
2 = -2(1) + c
2 = -2 + c
c = 4
----------------------------------------------------------------------------------------------
Insert y-intercept into the equation y = -2x + c
----------------------------------------------------------------------------------------------
y = -2x + 4
----------------------------------------------------------------------------------------------
Answer: y = -2x + 4
----------------------------------------------------------------------------------------------
Pull out the common factor of
:

Recall that
:

Rationalize the denominator:

Answer:
d. can be equal to the value of the coefficient of determination (r2).
True on the special case when r =1 we have that 
Step-by-step explanation:
We need to remember that the correlation coefficient is a measure to analyze the goodness of fit for a model and is given by:
The determination coefficient is given by 
Let's analyze one by one the possible options:
a. can never be equal to the value of the coefficient of determination (r2).
False if r = 1 then 
b. is always larger than the value of the coefficient of determination (r2).
False not always if r= 1 we have that
and we don't satisfy the condition
c. is always smaller than the value of the coefficient of determination (r2).
False again if r =1 then we have
and we don't satisfy the condition
d. can be equal to the value of the coefficient of determination (r2).
True on the special case when r =1 we have that 