Answer:
In conditions of low or no oxygen the process of anaerobic respiration occurs. The 'an' in 'anaerobic' means without. During anaerobic respiration, the oxidation of glucose is incomplete - not all of the energy can be released from the glucose molecule as it is only partially broken down.
Explanation:
Answer:
Catabolite repression
Explanation:
Catabolite repression is characteristic for prokaryotic organisms such as bacteria and this is the way to control metabolism.
It is called repression, because enzymes that are involved in other sugar's metabolism are inhibited (repressed). The system of catabolite repression have components such as:
- sensory systems-detects ratios of glycolytic intermediates,
- global regulators-control the expression of genes that encode for enzymes.
Answer - Mainly RNA Molecule
Reason - Reason is it needs an information is important to the development and synthesis of protein.
Answer:
12:3:1
Explanation:
<em>The typical F2 ratio in cases of dominant epistasis is 12:3:1.</em>
<u>The epistasis is a form of gene interaction in which an allele in one locus interacts with and modifies the effects of alleles in another locus</u>. There are different types of epistasis depending on the type of alleles that are interacting. These include:
- Dominant/simple epistasis: Here, a dominant allele on one locus suppresses the expression of both alleles on another locus irrespective of whether they are dominant or recessive. Instead of the Mendelian dihybrid F2 ratio of 9:3:3:1, what is obtained is 12:3:1. Examples of this type of gene interaction are found in seed coat color in barley, skin color in mice, etc.
- Other types of epistasis include <em>recessive epistasis (9:3:4), dominant inhibitory epistasis (13:3), duplicate recessive epistasis (9:7), duplicate dominant epistasis (15:1), and polymeric gene interaction (9:6:1).</em>