Answer:
Step-by-step explanation:
From the given information, we can compute the table showing the summarized statistics of the two alloys A & B:
Alloy A Alloy B
Sample mean

Equal standard deviation

Sample size

Mean of the sampling distribution is :

Standard deviation of sampling distribution:

Hypothesis testing.
Null hypothesis: 
Alternative hypothesis: 
The required probability is:
![P(\overline X_A - \overline X_B>4|\mu_A - \mu_B) = P\Big (\dfrac{(\overline X_A - \overline X_B)-\mu_{X_A-X_B}}{\sigma_{\overline x_A -\overline x_B}} > \dfrac{4 - \mu_{X_A-\overline X_B}}{\sigma _{\overline x_A - \overline X_B}} \Big) \\ \\ = P \Big( z > \dfrac{4-0}{1.2909}\Big) \\ \\ = P(z \ge 3.10)\\ \\ = 1 - P(z < 3.10) \\ \\ \text{Using EXCEL Function:} \\ \\ = 1 - [NORMDIST(3.10)] \\ \\ = 1- 0.999032 \\ \\ 0.000968 \\ \\ \simeq 0.0010](https://tex.z-dn.net/?f=P%28%5Coverline%20X_A%20-%20%5Coverline%20X_B%3E4%7C%5Cmu_A%20-%20%5Cmu_B%29%20%3D%20P%5CBig%20%28%5Cdfrac%7B%28%5Coverline%20X_A%20-%20%5Coverline%20X_B%29-%5Cmu_%7BX_A-X_B%7D%7D%7B%5Csigma_%7B%5Coverline%20x_A%20-%5Coverline%20x_B%7D%7D%20%3E%20%5Cdfrac%7B4%20-%20%5Cmu_%7BX_A-%5Coverline%20X_B%7D%7D%7B%5Csigma%20_%7B%5Coverline%20x_A%20-%20%5Coverline%20X_B%7D%7D%20%20%20%5CBig%29%20%5C%5C%20%5C%5C%20%3D%20P%20%5CBig%28%20z%20%3E%20%5Cdfrac%7B4-0%7D%7B1.2909%7D%5CBig%29%20%5C%5C%20%5C%5C%20%3D%20P%28z%20%5Cge%203.10%29%5C%5C%20%5C%5C%20%3D%201%20-%20P%28z%20%3C%203.10%29%20%5C%5C%20%5C%5C%20%5Ctext%7BUsing%20EXCEL%20Function%3A%7D%20%5C%5C%20%5C%5C%20%20%3D%201%20-%20%5BNORMDIST%283.10%29%5D%20%20%5C%5C%20%5C%5C%20%3D%201-%200.999032%20%5C%5C%20%5C%5C%200.000968%20%5C%5C%20%5C%5C%20%5Csimeq%20%200.0010)
This implies that a minimal chance of probability shows that the difference of 4 is not likely, provided that the two population means are the same.
b)
Since the P-value is very small which is lower than any level of significance.
Then, we reject
and conclude that there is enough evidence to fully support alloy A.
You can use point slope formula.

By getting the slope (m) from ∆y/∆x
You can plug it into the equation and plug in either of the two points as x1 and y1. This will result in the value for b. Plug that into the final equation and you have your answer!
To prove that it is a parallelogram, remember that the definition of a parallelogram is a quadrilateral with two pairs of parallel sides. Therefore, one way to prove it is a parallelogram is to verify that the opposite sides are parallel. From algebra, remember that two lines are parallel if they have the same slope.
Answer:
We could see the graph of all of the three questions of the quadrilaterals as is attached with the answer.
Ques 14)
The vertices of quadrilateral is given as:
W(-1,1),X(0,2),Y(1,2),Z(0,-2)
Ques 15)
The vertices of the quadrilateral is given as:
R(-2,-3) , S(4,0), T(3,2) and V(-3,-1)
Ques 18)
The vertices of the quadrilateral are given as:
E(-3,1), F(-7,-3) ,G(6,-3) and H(2,1)
Answer:
Solution: x = 6
Step-by-step explanation:
Given equation is:

In order to solve the equation both sides will be squared

Verifying the solution
