Answer: y < 1
<u>Step-by-step explanation:</u>

The first function has the range of y < -4
The second function has the range of y = -3
The third function has the range of y < 1
The largest y-value is 1 and the smallest y-value is -∞, therefore the range (y-values) are from -∞ to 1 → y < 1
X 3/5 =2x+15=2x=15-2x=13
answer 13
Answer:
(x + 0, y − 2), reflection over y = 1
Step-by-step explanation:
H will be shifted down 2 units and then reflected over y = 1, which maps H into itself
Answer: Area of ΔABC is 2.25x the area of ΔDEF.
Step-by-step explanation: Because equilateral triangle has 3 equal sides, area is calculated as

with a as side of the triangle.
Triangle ABC is 20% bigger than the original, which means its side (a₁) measures, compared to the original:
a₁ = 1.2a
Then, its area is


Triangle DEF is 20% smaller than the original, which means its side is:
a₂ = 0.8a
So, area is


Now, comparing areas:

2.25
<u>The area of ΔABC is </u><u>2.25x</u><u> greater than the area of ΔDEF.</u>
Answer:
A
Step-by-step explanation:
Put brackets around the first two tems.
y = (x^2 - 8x) + 29
Take 1/2 coefficient of the linear term -8. Square that result. Add it inside the brackets.
1/2 (- 8) = - 4
(- 4)^2 = 16
y = (x^2 - 8x + 16) + 29
Subtract 16 outside the brackets.
y = (x^2 - 8x + 16) + 29 - 16
Do the subtraction
y = (x^2 - 8x + 16) + 13
Represent what is inside the brackets as a square.
y = ( x - 4)^2 + 13
The answer is A