N=410,439
You can just type your problem into a calculator-- you're just finding out what 420,008-9,569 is. :)
Answer:
1. 3
2. 2
Step-by-step explanation:
| |
x | + | 1 | | x^2 | + | 4 x | - | 2
x^3 | + | 5 x^2 | + | 2 x | + | 1
x^3 | + | x^2 | | | |
| | 4 x^2 | + | 2 x | |
| | 4 x^2 | + | 4 x | |
| | | | -2 x | + | 1
| | | | -2 x | - | 2
| | | | | | 3
__________________________________________
| |
x | - | 5 | | x^2 | - | x | + | 0
x^3 | - | 6 x^2 | + | 5 x | + | 2
x^3 | - | 5 x^2 | | | |
| | -x^2 | + | 5 x | |
| | -x^2 | + | 5 x | |
| | | | | | 2
| | | | | | 0
| | | | | | 2
Sequence 1,5,9,13,...
A(0) = 1 +4x0=1
A(1) =1 + 4x1 = 5
A(2) = 1+ 4x2= 9
A(3) = 1 +4x3=13
A(n)= 1+4n A(n-1) = 1+4(n-1) =1+4n-4= - 3+4n
A(n) - A(n-1) = (1+4n) - (-3=4n) = 4
A(n) = A(n-1) +4; 29 is the answer
Solve the equation for
t
t
by finding
a
a
,
b
b
, and
c
c
of the quadratic then applying the quadratic formula.
t
=
10
−
h
+
√
h
2
−
20
h
+
160
10
t
=
10
-
h
+
h
2
-
20
h
+
160
10
t
=
10
−
h
−
√
h
2
−
20
h
+
160
10
Answer:
k=4
Step-by-step explanation: