the equation in the slope-intercept of the side of triangle ABC that is perpendicular to segment EF is y = x + 1
<h3>How to determine the equation</h3>
From the figure given, we can deduce the coordinates of the sides
For A
A ( 4,2)
For B
B ( 4, 5)
C ( 1, 2)
D ( 2, -4 )
E ( 5, -4)
F ( 2, -1)
The slope for BC
Slope = 
Substitute the values for both B and C coordinates, we have
Slope = 
Find the difference for both the numerator and denominator
Slope = 
Slope = 1
We have the rotation for both point ( 0, 1)
y - y1 = m ( x - x1)
The values for y1 and x1 are 1 and 0 respectively and the slope m is 1
Substitute the values
y - 1 = 1 ( x - 0)
y - 1 = x
Make 'y' the subject of formula
y = x + 1
Thus, the equation in the slope-intercept of the side of triangle ABC that is perpendicular to segment EF is y = x + 1
Learn more about linear graphs here:
brainly.com/question/4074386
#SPJ1
The slope is -4. This is because of slope intercept form, y=mxtb. M= the slope so the slope in this case is -4
Answer:
The Obvious
Euler graph all connects almost like a circle
A tree graph looks like it branches off each other with no line connect in a circle like form
Answer:
The position P is:
ft <u><em> Remember that the position is a vector. Observe the attached image</em></u>
Step-by-step explanation:
The equation that describes the height as a function of time of an object that moves in a parabolic trajectory with an initial velocity
is:

Where
is the initial height = 0 for this case
We know that the initial velocity is:
82 ft/sec at an angle of 58 ° with respect to the ground.
So:
ft/sec
ft/sec
Thus

The height after 2 sec is:


Then the equation that describes the horizontal position of the ball is

Where
for this case
ft / sec
ft/sec
So

After 2 seconds the horizontal distance reached by the ball is:

Finally the vector position P is:
ft