Answer:
X = 5°
Step-by-step explanation:
180° on a straight line.
180 - 100 = 80 angle ABC = 80°
angle ACB is vertically opposite to the 60° given
ACB = 60°
180 - 80 - 60 = 7x+5
40 = 7x + 5
7x = 35
X = 5
We know that
case 1)
Applying the law of sines
a/Sin A=b/Sin B
A=56°
a=12
b=14
so
a*Sin B=b*Sin A----> Sin B=b*Sin A/a---> Sin B=14*Sin 56°/12
Sin B=0.9672
B=arc sin (0.9672)------> B=75.29°-----> B=75.3°
find angle C
A+B+C=180°-----> C=180-(A+B)----> C=180-(56+75.3)----> C=48.7°
find c
a/Sin A=c/Sin C----> c=a*Sin C/Sin A----> c=12*Sin 48.7°/Sin 56°)
c=10.87-----> c=10.9
the answer Part 1)
the dimensions of the triangle N 1
are
a=12 A=56°
b=14 B=75.3°
c=10.9 C=48.7°
case 2)
A=56°
a=12
b=14
B=180-75.3----> B=104.7°
find angle C
A+B+C=180°-----> C=180-(A+B)----> C=180-(56+104.7)----> C=19.3°
find c
a/Sin A=c/Sin C----> c=a*Sin C/Sin A----> c=12*Sin 19.3°/Sin 56°)
c=4.78-----> c=4.8
the answer Part 2)
the dimensions of the triangle N 2
are
a=12 A=56°
b=14 B=104.7°
c=4.8 C=19.3°
Answer:
12 units
Step-by-step explanation:
Given the points :
R(−3, 2) - - - > S(2, 2) - - - - > T(2, −5).
Distance between R and S
Distance between two points is obtained thus :
D = sqrt((x2 - x1)^2 + (y2 - y1)^2)
Distance between R and S
x1 = - 3 ; y1= 2 ; x2 = 2 ; y2 = 2
D1 = sqrt((2 - (-3))^2 + (2 - 2)^2)
D1 = sqrt((5^2 + 0^2))
D1 = sqrt(25)
D1 = 5
Distance between S and T
x1 = 2 ; y1= 2 ; x2 = 2 ; y2 = - 5
D2 = sqrt((2 - 2)^2 + (-5 - 2)^2)
D2 = sqrt((0^2 + (-7)^2))
D2 = sqrt(49)
D2 = 7
Hence, total length = D1 + D2 = 5 + 7 = 12 units