Answer:
The answer is below
Step-by-step explanation:
∠EFG and ∠GFH are a linear pair, m∠EFG = 3n+ 21, and m∠GFH = 2n + 34. What are m∠EFG and m∠GFH?
Solution:
Two angles are said to form a linear pair if they share a base. Linear pair angles are adjacent angles formed along a line as a result of the intersection of two lines. Linear pairs are always supplementary (that is they add up to 180°).
m∠EFG = 3n + 21, m∠GFH = 2n + 34. Both angles form linear pairs, hence:
m∠EFG + m∠GFH = 180°
3n + 21 + (2n + 34) = 180
3n + 2n + 21 + 34 = 180
5n + 55 = 180
5n = 125
n = 25
Therefore, m∠EFG = 3(25) + 21 = 96°, m∠GFH = 2(25) + 34 = 84°
S would be the annual sales of the electronic device. In this case, that number is in the millions.
Therefore, our 13.9 becomes 13.9 millions.
Or written out, it would be: 13,900,000
Considering the definition of zeros of a function, the zeros of the quadratic function f(x) = x² + 4x +9 do not exist.
<h3>Zeros of a function</h3>
The points where a polynomial function crosses the axis of the independent term (x) represent the so-called zeros of the function.
In summary, the roots or zeros of the quadratic function are those values of x for which the expression is equal to 0. Graphically, the roots correspond to the abscissa of the points where the parabola intersects the x-axis.
In a quadratic function that has the form:
f(x)= ax² + bx + c
the zeros or roots are calculated by:

<h3>This case</h3>
The quadratic function is f(x) = x² + 4x +9
Being:
the zeros or roots are calculated as:



and



If the content of the root is negative, the root will have no solution within the set of real numbers. Then
has no solution.
Finally, the zeros of the quadratic function f(x) = x² + 4x +9 do not exist.
Learn more about the zeros of a quadratic function:
brainly.com/question/842305
brainly.com/question/14477557
#SPJ1
Yes your graphing right
Y intercept is -2 and the slope is 1
Y = X + -2