Triangles add up to 180°, so the answer is 67
Answer:
12 1/3
Step-by-step exp
First, you need to add up 11/4 and
6 1/2
11/ 4 + 6 1/2 = 11/4 + 13/2 = 37 / 4
To find how many 3/4 we have in 37/4, we simply dividw 37/4 by 3/4
37/4 ÷ 3/4
= 37/4 × 4/3 (4 will cancel out 4)
= 37/3
=12 1/3
Answer:
10
Step-by-step explanation:
Answer:
a) 6 ways
b) 6 ways
Step-by-step explanation:
a) for all of the letters
for the first letter, we have 3 options
for the second, we have 2 options
for the third, we have 1 option
So the number of options will be;
3 * 2 * 1 = 6
b) for the first, we have 3 options, for the second, we have 2 options
so the number of options will be 3 * 2 = 6 options
Using the <em>normal distribution and the central limit theorem</em>, it is found that there is a 0.1335 = 13.35% probability that 100 randomly selected students will have a mean SAT II Math score greater than 670.
<h3>Normal Probability Distribution</h3>
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:

- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem:
- The mean is of 660, hence
.
- The standard deviation is of 90, hence
.
- A sample of 100 is taken, hence
.
The probability that 100 randomly selected students will have a mean SAT II Math score greater than 670 is <u>1 subtracted by the p-value of Z when X = 670</u>, hence:

By the Central Limit Theorem



has a p-value of 0.8665.
1 - 0.8665 = 0.1335.
0.1335 = 13.35% probability that 100 randomly selected students will have a mean SAT II Math score greater than 670.
To learn more about the <em>normal distribution and the central limit theorem</em>, you can take a look at brainly.com/question/24663213