Given:
The inequality is:

To find:
The solution of the given inequality.
Solution:
We have,

Multiply both sides by 3.

Divide both sides by -8 and change the sign of inequality.


It can be written as:

Therefore, the correct option is A.
Answer:
3rd box, last box, 2nd box, 5th box in that order
Step-by-step explanation:
PEMDAS
Answer:
a segment is partitioned at a ratio of 1:3, then the point is one-fourth of the distance from (-4,-1) to (2,7).
To compute the x-coordinate of that point, you will need to compute one-fourth of the x-distance between 2 and -4 then add it to -4: (2--4)/4 = 1.5; 1.5 + -4 = -2.5.
To compute the y-coordinate of that point, you will need to compute one-fourth of the y-distance between 7 and -1 then add it to -1: (7--1)/4 = 2; 2 + -1 = 1.
The point is (-2.5,1)
We have to solve this equation:

Third degree polynomials like this one are not easily solved, but this one has a root at x = 0. The let us factorize this polynomial as x times a second degree polynomial:

Now we can find the roots of the quadratic polynomial as:
![\begin{gathered} x=\frac{-(-6)\pm\sqrt[]{(-6)^2-4\cdot1\cdot6}}{2\cdot1} \\ x=\frac{6\pm\sqrt[]{36-24}}{2} \\ x=\frac{6\pm\sqrt[]{12}}{2} \\ x=\frac{6\pm\sqrt[]{4\cdot3}}{2} \\ x=\frac{6\pm2\sqrt[]{3}}{2} \\ x=3\pm\sqrt[]{3} \\ x_1=3-\sqrt[]{3} \\ x_2=3+\sqrt[]{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-%28-6%29%5Cpm%5Csqrt%5B%5D%7B%28-6%29%5E2-4%5Ccdot1%5Ccdot6%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm%5Csqrt%5B%5D%7B36-24%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm%5Csqrt%5B%5D%7B12%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm%5Csqrt%5B%5D%7B4%5Ccdot3%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm2%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%20%5C%5C%20x%3D3%5Cpm%5Csqrt%5B%5D%7B3%7D%20%5C%5C%20x_1%3D3-%5Csqrt%5B%5D%7B3%7D%20%5C%5C%20x_2%3D3%2B%5Csqrt%5B%5D%7B3%7D%20%5Cend%7Bgathered%7D)
Then, the solutions to the equation are:
x = 0
x = 3 - √3
x = 3 + √3