<em>For</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>image</em><em>,</em><em> </em><em>note</em><em> </em><em>that</em><em> </em><em>slope</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>thing</em><em> </em><em>as</em><em> </em><em>gradient</em><em>.</em>
1) y = 2x + 4
2) Substituting in x = 1 and y = 1,
1 = 4(1) + c
1 = 4 + c
c = -3
So, the equation is y = 4x - 3
#4)
cross multiply
2(8x+10) = 4 * 5x
16x + 20 = 20x
4x = 20
x = 5
Speed of the plane: 250 mph
Speed of the wind: 50 mph
Explanation:
Let p = the speed of the plane
and w = the speed of the wind
It takes the plane 3 hours to go 600 miles when against the headwind and 2 hours to go 600 miles with the headwind. So we set up a system of equations.
600
m
i
3
h
r
=
p
−
w
600
m
i
2
h
r
=
p
+
w
Solving for the left sides we get:
200mph = p - w
300mph = p + w
Now solve for one variable in either equation. I'll solve for x in the first equation:
200mph = p - w
Add w to both sides:
p = 200mph + w
Now we can substitute the x that we found in the first equation into the second equation so we can solve for w:
300mph = (200mph + w) + w
Combine like terms:
300mph = 200mph + 2w
Subtract 200mph on both sides:
100mph = 2w
Divide by 2:
50mph = w
So the speed of the wind is 50mph.
Now plug the value we just found back in to either equation to find the speed of the plane, I'll plug it into the first equation:
200mph = p - 50mph
Add 50mph on both sides:
250mph = p
So the speed of the plane in still air is 250mph.
The answer has to be 1,350 is that one of your options
Answer: 
Step-by-step explanation: 11/12 - 3/8
1. First, we will find a common denomenator. It needs to be the least common factor, or the answer will not be in its simplist form. Let's take a look at the multiples of 12 and 8.
12: 12, 24, 36, 48, 60, 72, 84, 96
8: 8, 16, 24, 32, 40, 48, 56, 64, 72
2. Next, we will choose the smallest common multiple. That would be 24.
3. Now, we will work this out.
11/12 = 22/24
3/8 = 9/24
4. Subtract.
22/24 - 9/24
= 13/24
= 
I found the denomenators by multiplying.
Hope this answer helped!