When frequency increases more wave crests pass a fixed point each second. That means the wavelength shortens. So, as frequency increases, wavelength decreases. The opposite is also true.... as frequency decreases, wavelength increases.
Bonds formed between atoms can be classified as ionic and covalent
Ionic bonds are formed between atoms that have a high difference in the electronegativity values.
In contrast, bonds formed between atoms that have a difference in electronegativity lower than the ionic counterparts are polar covalent bonds. If the atoms have very similar electronegativities, they form non-polar covalent bonds.
In H2S, the S atom is bonded to 2 H atoms. The electronegativity of H = 2.2 and S= 2.56. Since the difference is not high the bond formed will be covalent (polar covalent).
Group 1 atoms only have one. Group 2 has 2 valence electrons, and so on.
<u>Answer:</u> From the given gases, the greatest rate of effusion is of 
<u>Explanation:</u>
Rate of effusion of a gas is determined by a law known as Graham's Law.
This law states that the rate of effusion or diffusion of a gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:

It is visible that molar mass is inversely related to rate of effusion. So, the gas having lowest molar mass will have the highest rate of effusion.
For the given gases:
Molar mass of 
Molar mass of 
Molar mass of 
Molar mass of 
Molar mass of 
The molar mass of methane gas is the lowest. Thus, it will have the greatest rate of effusion.
Hence, the greatest rate of effusion is of 