Answer: R(x) = 0.25x + 500
Flat fee is computed by:
The sales price of each tile is 0.25 and the customer only bought 10,000 tiles.
So, $0.25 x 10,000 = $2500
So the total sales price per tile sold was $2,500.
The buyer paid $3,000, so the flat fee was included there.
So, $3,000 - $2,500 = $500
So the flat fee was $500.
~
The revenue function is the total income from producing the units. And it has a equation of: R(x) = price per unit x number of units sold plus any fee that is included
So the function describing the revenue of the tile from this sale is:
R(x) = 0.25x + 500
Answer:
Function:
c = f(w) = 0.49, 0 < w ≤ 1
= 0.70, 1 < w ≤ 2
= 0.91, 2 < w ≤ 3
Step-by-step explanation:
Yes, the relation described can be interpreted as a function.
Here, c is the cost of a mail letter. c depends upon w, which is the weights of the mail letter.
As described in the question, the relation can be expressed as a function.
c can be expressed as a function of w in the following manner:
c(cost of mail) = f(w), where w is the independent variable and c is the dependent variable
c = f(w) = 0.49, 0 < w ≤ 1
= 0.70, 1 < w ≤ 2
= 0.91, 2 < w ≤ 3
where, c is in dollars and w is in ounces.
<span>You can probably just work it out.
You need non-negative integer solutions to p+5n+10d+25q = 82.
If p = leftovers, then you simply need 5n + 10d + 25q ≤ 80.
So this is the same as n + 2d + 5q ≤ 16
So now you simply have to "crank out" the cases.
Case q=0 [ n + 2d ≤ 16 ]
Case (q=0,d=0) → n = 0 through 16 [17 possibilities]
Case (q=0,d=1) → n = 0 through 14 [15 possibilities]
...
Case (q=0,d=7) → n = 0 through 2 [3 possibilities]
Case (q=0,d=8) → n = 0 [1 possibility]
Total from q=0 case: 1 + 3 + ... + 15 + 17 = 81
Case q=1 [ n + 2d ≤ 11 ]
Case (q=1,d=0) → n = 0 through 11 [12]
Case (q=1,d=1) → n = 0 through 9 [10]
...
Case (q=1,d=5) → n = 0 through 1 [2]
Total from q=1 case: 2 + 4 + ... + 10 + 12 = 42
Case q=2 [ n + 2 ≤ 6 ]
Case (q=2,d=0) → n = 0 through 6 [7]
Case (q=2,d=1) → n = 0 through 4 [5]
Case (q=2,d=2) → n = 0 through 2 [3]
Case (q=2,d=3) → n = 0 [1]
Total from case q=2: 1 + 3 + 5 + 7 = 16
Case q=3 [ n + 2d ≤ 1 ]
Here d must be 0, so there is only the case:
Case (q=3,d=0) → n = 0 through 1 [2]
So the case q=3 only has 2.
Grand total: 2 + 16 + 42 + 81 = 141 </span>
The formula of linear equation is:

Where
x1 and x2: x coordinates(-1 and 3)
y1 and y2: y coordinates(-2 and 10)
m is the slope
We can then choose a point from the line to find the eqaution.
We need to first find the slope:

In this case:

In this case, as the y2 is given as 1,put (-1,-2) , and the slope(3 )into the eqaution :
y-(-2) = 3(x-(-1))
y+2 = 3(x+1)
Therefore

is the answer.
Hope it helps!
You have to add all the numbers then leave one and subtract it