Your answer is a equation!
Answer:
The smaller angle is 35 and the larger one is 145.
Step-by-step explanation:
In order to find this, we need to express the larger angle in terms of the smaller angle (x).
4x + 5 = large angle.
Now that we have this, we can add them together and set equal to 180.
x + (4x + 5) = 180
5x + 5 = 180
5x = 175
x = 35
Now that we have the value of the smaller angle, we can plug in to get the larger angle.
y = 4x + 5
y = 4(35) + 5
y = 140 + 5
y = 145
12.7
Using the Pythagorean theorem, you can easily calculate the length of BC.
So:
BC = sqrt(12^2 - 6^2) = sqrt(144 - 36) = sqrt(108) = 10.39230485
Now consider triangle BCD. You know all three angles and one side. Using the law of sines you know that ratio of the sine of each angle over the opposite side is constant. So:
BC/sin(55) = CD/sin(90)
BC/sin(55) = CD/sin(90)
sin(90)BC/sin(55) = CD
1*BC/sin(55) = CD
BC/sin(55) = CD
10.39230485/0.819152044 = CD
12.68666167 = CD
12.7 = CD
Attach an image of the two triangles on a cartesian plane
a = amount deposited at 3.5%
b = amount deposited at 4.5%
we know that "b" is twice as much as "a", thus b = 2a.
![\begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{3.5\% of a}}{\left( \cfrac{3.5}{100} \right)a}\implies 0.035a \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{4.5\% of 2a}}{\left( \cfrac{4.5}{100} \right)2a}\implies 0.045(2a)](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Ba%5C%25%20of%20b%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29%5Ccdot%20b%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7B3.5%5C%25%20of%20a%7D%7D%7B%5Cleft%28%20%5Ccfrac%7B3.5%7D%7B100%7D%20%5Cright%29a%7D%5Cimplies%200.035a%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Ba%5C%25%20of%20b%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29%5Ccdot%20b%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7B4.5%5C%25%20of%202a%7D%7D%7B%5Cleft%28%20%5Ccfrac%7B4.5%7D%7B100%7D%20%5Cright%292a%7D%5Cimplies%200.045%282a%29)
we also know that whatever "a" amount is, their sum is 2250, thus
