1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
10

If 2(6 + 3x) + 1 = - 5 + 3(x - 1), what is the value of x?

Mathematics
2 answers:
Stels [109]3 years ago
5 0

Answer: x = -7

Step-by-step explanation:

2(6 + 3x) + 1 = - 5 + 3(x - 1)

(2) (6) + (2) (3x) + 1 = -5 + (3) (x) + (3) (-1)

12 + 6x + 1 = - 5 + 3x + - 1

( 6x ) + ( 12 - 1 ) = ( 3x ) + ( -5 + -3 )

6x + 13 = 3x - 8

6x + 13 - 3x = 3x - 8 - 3x

3x + 13 = -8

3x + 13 - 13 = -8 - 13

3x = -21

3x/3 -21/3

X = -7

timurjin [86]3 years ago
5 0
12+6x+1= -5+3x-3
3x= -21
x= -7
You might be interested in
Imani won 50 super bouncy balls playing
pantera1 [17]

Answer:

16

Step-by-step explanation:

50-2= 48

48 divide by 2 is 16

8 0
4 years ago
Please help with this question!! I need serious help!!
asambeis [7]

Answer:

<h2>The circumference is multipled by 4.</h2>

Step-by-step explanation:

The formula of an area of a circle"

A=\pi r^2

The formula of a circumference of a circle:

C=2\pi r

The area multipled by 16:

16A=16\pi r^2\\\\16A=\pi(4^2r^2)\\\\16A=\pi(4r)^2

The radius has increased fourfold, therefore:

C'=2\pi(4r)=4(2\pi r)=4C

The circumference is multipled by 4.

You can calculate the area and check the circumference:

r=11.6\ in\\\\A=\pi(11.6)^2=132.56\pi\\\\16A=(16)(134.56\pi)=2152.96\pi\ in^2

Calculate the radius:

\pi r^2=2152.96\pi             <em>divide both sides by π</em>

r^2=2152.96\to r=\sqrt{2152.96}\\\\r=46.4\ in

Calculate the circumference of both circles:

r=11.6\ in\\\\C=2\pi(11.6)=23.2\pi\ in

r=46.4\ in\\\\C'=2\pi(46.4)=92.8\pi\ in

\dfrac{C'}{C}=\dfrac{92.8\pi}{23.2\pi}=4\to C'=4C

5 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
Help PLZZZ
Assoli18 [71]
39 miles. If d=rt and the rate is 16 mph and the time is 3 hours then 16 times 3 gives the distance of 39 miles. I could be wrong but that is what I would have done. I’m not sure if there are answer choices or not
4 0
4 years ago
Does someone know where on the quadrant go on the coordinate planes ​
stiv31 [10]

The origin is at 0 on the x-axis and 0 on the y-axis. The intersecting x- and y-axes divide the coordinate plane into four sections. These four sections are called quadrants. Quadrants are named using the Roman numerals I, II, III, and IV beginning with the top right quadrant and moving counter clockwise.

6 0
4 years ago
Other questions:
  • If the perimeter of an equilateral triangle is 30 ft, what is the area?
    15·1 answer
  • The table below shows the values for the function y= f(x)
    7·1 answer
  • Express the following English phrase using an algebraic expression. The quotient of some number y and 6 increased by the product
    13·1 answer
  • Judy claims that she can find 0.5 x 2.4 by dividing 2.4 into two equal parts. Is she correct? Draw a decimal model to explain
    13·2 answers
  • What is the domain, and what is the range?
    15·2 answers
  • Is 8in 15in and 17in a right triangle
    13·1 answer
  • Which is the opposite of -5?
    15·1 answer
  • Which segment is NOT A RADIUS?????????????
    11·1 answer
  • Just need help real quick​
    8·1 answer
  • A+4/3=-12<br> What does a=
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!