Answer:
16
Step-by-step explanation:
50-2= 48
48 divide by 2 is 16
Answer:
<h2>The circumference is multipled by 4.</h2>
Step-by-step explanation:
The formula of an area of a circle"

The formula of a circumference of a circle:

The area multipled by 16:

The radius has increased fourfold, therefore:

The circumference is multipled by 4.
You can calculate the area and check the circumference:

Calculate the radius:
<em>divide both sides by π</em>

Calculate the circumference of both circles:



The answer is: " 91 " .
___________________________________________________
→ " B = 91 " .
__________________________________________________
Explanation:
__________________________________________________
Given:
__________________________________________________
" A + B = 180 " ;
"A = -2x + 115 " ; ↔ A = 115 − 2x ;
"B = - 6x + 169 " ; ↔ B = 169 − 6x ;
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to solve for "B"
_____________________________________________________
(115 − 2x) + (169 − 6x) =
115 − 2x + 169 − 6x = ?
→ Combine the "like terms" ; as follows:
+ 115 + 169 = + 284 ;
− 2x − 6x = − 8x ;
_________________________________________________________
And rewrite as:
" − 8x + 284 " ;
_________________________________________________________
→ " - 8x + 284 = 180 " ;
Subtract: "284" from each side of the equation:
→ " - 8x + 284 − 284 = 180 − 284 " ;
to get:
→ " -8x = -104 ;
Divide EACH SIDE of the equation by "-8 " ;
to isolate "x" on one side of the equation; & to solve for "x" ;
→ -8x / -8 = -104/-8 ;
→ x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
"B = - 6x + 169 " ; ↔ B = 169 − 6x ;
↔ B = 169 − 6x ;
= 169 − 6(13) ; ===========> Plug in our "solved value, "13", for "x" ;
= 169 − (78) ;
= 91 ;
B = " 91 " .
__________________________________________________
The answer is: " 91 " .
____________________________________________________
→ " B = 91 " .
____________________________________________________
Now; let us check our answer:
____________________________________________________
→ A + B = 180 ;
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ; as follows:
________________________________________________________
→ A + 91 = ? 180? ;
↔ A = ? 180 − 91 ? ;
→ A = ? -89 ? Yes!
________________________________________________________
→ " A = -2x + 115 " ; ↔ A = 115 − 2x ;
Plug in our solved value for "x"; which is: "13" ;
" A = 115 − 2x " ;
→ A = ? 115 − 2(13) ? ;
→ A = ? 115 − (26) ? ;
→ A = ? 29 ? Yes!
_________________________________________________
METHOD 2)
_________________________________________________
Given:
__________________________________________________
" A + B = 180 " ;
"A = -2x + 115 " ; ↔ A = 115 − 2x ;
"B = - 6x + 169 " ; ↔ B = 169 − 6x ;
→ Solve for the value of "B" :
_______________________________________________________
A + B = 180 ;
→ B = 180 − A ;
→ B = 180 − (115 − 2x) ;
→ B = 180 − 1(115 − 2x) ; ==========> {Note the "implied value of "1" } ;
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________ a(b + c) = ab + ac ; <u><em>AND</em></u>:
a(b − c) = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
→ " − 1(115 − 2x) " ;
________________________________________________________
→ " − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;
= -115 − (-2x) ;
= -115 + 2x ;
________________________________________________________
So we can bring down the: " {"B = 180 " ...}" portion ;
→and rewrite:
_____________________________________________________
→ B = 180 − 115 + 2x ;
→ B = 65 + 2x ;
_____________________________________________________
Now; given: "B = - 6x + 169 " ; ↔ B = 169 − 6x ;
→ " B = 169 − 6x = 65 + 2x " ;
______________________________________________________
→ " 169 − 6x = 65 + 2x "
Subtract "65" from each side of the equation; & Subtract "2x" from each side of the equation:
→ 169 − 6x − 65 − 2x = 65 + 2x − 65 − 2x ;
to get:
→ " - 8x + 104 = 0 " ;
Subtract "104" from each side of the equation:
→ " - 8x + 104 − 104 = 0 − 104 " ;
to get:
→ " - 8x = - 104 ;
Divide each side of the equation by "-8" ;
to isolate "x" on one side of the equation; & to solve for "x" ;
→ -8x / -8 = -104 / -8 ;
to get:
→ x = 13 ;
______________________________________________________
Now, let us solve for: " B " ; → {for which this very question/problem asks!} ;
→ B = 65 + 2x ;
Plug in our solved value, " 13 ", for "x" ;
→ B = 65 + 2(13) ;
= 65 + (26) ;
→ B = " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given: "B = - 6x + 169 " ; ↔ B = 169 − 6x = 91 ;
When "x = 13 " ; does: " B = 91 " ?
→ Plug in our "solved value" of " 13 " for "x" ;
→ to see if: "B = 91" ; (when "x = 13") ;
→ B = 169 − 6x ;
= 169 − 6(13) ;
= 169 − (78)______________________________________________________
→ B = " 91 " .
______________________________________________________
39 miles. If d=rt and the rate is 16 mph and the time is 3 hours then 16 times 3 gives the distance of 39 miles. I could be wrong but that is what I would have done. I’m not sure if there are answer choices or not
The origin is at 0 on the x-axis and 0 on the y-axis. The intersecting x- and y-axes divide the coordinate plane into four sections. These four sections are called quadrants. Quadrants are named using the Roman numerals I, II, III, and IV beginning with the top right quadrant and moving counter clockwise.