Answer:
x= 18.5 y = 14.2
Step-by-step explanation:
Answer:
C
Step-by-step explanation:
Make a system of equations.
Justin = j
Greg = g
j + 15 = g
g/2 + 75 = j
We can substitute.
(j + 15)/2 + 75 = j
j/2 + 15/2 + 75 = j
j/2 = 165/2
j = 165
Substitute back into j + 15 = g
165 + 15 = g
g = 180
Answer:
1 7/12
Step-by-step explanation:
because the water was poured to the other glass so it means that we are adding
= 5/6 + 3/4
={(2×5) + (3×3)}/12
that 12 is due to LCM of 6 and 4
={ 10 + 9 }/12
= 19/12
= 1 7/12
those are my thoughts
Answer:
inductive
Step-by-step explanation:
Answer:
A. 0.1035
B. 0.1406
C. 0.1025
Step-by-step explanation:
Given that:
the number of sample questions (n) = 5
The probability of choosing the correct choice (p) = 1/4 = 0.25
Suppose X represents the number of question that are guessed correctly.
Then, the required probability that she gets the majority of her question correctly is:
P(X>2) = P(X=3) + P(X =4) + P(X = 5)

![P(X>2) = \Bigg [ \dfrac{5!}{3!(5-3)!} \times (0.25)^3 (1-0.25)^{2} + \dfrac{5!}{4!(5-4)!} \times (0.25)^4 (1-0.25)^{1} +\dfrac{5!}{5!(5-5)!} \times (0.25)^5 (1-0.25)^{0} \Bigg ]](https://tex.z-dn.net/?f=P%28X%3E2%29%20%3D%20%5CBigg%20%5B%20%5Cdfrac%7B5%21%7D%7B3%21%285-3%29%21%7D%20%5Ctimes%20%280.25%29%5E3%20%281-0.25%29%5E%7B2%7D%20%2B%20%5Cdfrac%7B5%21%7D%7B4%21%285-4%29%21%7D%20%20%5Ctimes%20%280.25%29%5E4%20%281-0.25%29%5E%7B1%7D%20%2B%5Cdfrac%7B5%21%7D%7B5%21%285-5%29%21%7D%20%20%5Ctimes%20%280.25%29%5E5%20%281-0.25%29%5E%7B0%7D%20%5CBigg%20%5D)
P(X>2) = [ 0.0879 + 0.0146 + 0.001 ]
P(X>2) = 0.1035
B.
Recall that
n = 5 and p = 0.25
The probability that the first Q. she gets right is the third question can be computed as:

Since, x = 3



P(X=3) = 0.1406
C.
The probability she gets exactly 3 or exactly 4 questions right is as follows:
P(X. 3 or 4) = P(X =3) + P(X =4)
![P(X=3 \ or \ 4) = [ (^{5}C_{3}) \times (0.25)^3 (1-0.25)^{5-3} + (^{5}C_{4}) \times (0.25)^4 (1-0.25)^{5-4}]](https://tex.z-dn.net/?f=P%28X%3D3%20%5C%20or%20%5C%204%29%20%3D%20%20%5B%20%28%5E%7B5%7DC_%7B3%7D%29%20%5Ctimes%20%280.25%29%5E3%20%281-0.25%29%5E%7B5-3%7D%20%2B%20%28%5E%7B5%7DC_%7B4%7D%29%20%5Ctimes%20%280.25%29%5E4%20%281-0.25%29%5E%7B5-4%7D%5D)
![P(X=3 \ or \ 4) = \Bigg [ \dfrac{5!}{3!(5-3)!} \times (0.25)^3 (1-0.25)^{2} + \dfrac{5!}{4!(5-4)!} \times (0.25)^4 (1-0.25)^{1} \Bigg ]](https://tex.z-dn.net/?f=P%28X%3D3%20%5C%20or%20%5C%204%29%20%3D%20%5CBigg%20%5B%20%5Cdfrac%7B5%21%7D%7B3%21%285-3%29%21%7D%20%5Ctimes%20%280.25%29%5E3%20%281-0.25%29%5E%7B2%7D%20%2B%20%5Cdfrac%7B5%21%7D%7B4%21%285-4%29%21%7D%20%20%5Ctimes%20%280.25%29%5E4%20%281-0.25%29%5E%7B1%7D%20%5CBigg%20%5D)
P(X = 3 or 4) = [ 0.0879 + 0.0146 ]
P(X=3 or 4) = 0.1025