The answer is D
Correct me if I am wrong
Used by counting, the number line helps you count steps forward/backwards. You can count from the number you're on, (34) and then go go backwards 28 times.
Answer:
Yes 92,105,600 is divisible by 10
Step-by-step explanation:
<em>9,210,560 </em><em>is Going to be your Answer After you finish Dividing</em>
<em />
<h2>More Information↓</h2>
<em>The dividend is the number to the right and under the division line and is the number being divided.
</em>
<em>
</em>
<em>The divisor is the number to the left of the division line and is the number being dividing by.
</em>
<em>
</em>
<em>The quotient is the solution and is shown above the dividend over the division line. Often in long division, the quotient is the whole number part of the solution.
</em>
<em>
</em>
<em>The remainder is the remaining part of the solution, or what’s leftover, that doesn’t fit evenly into the quotient.</em>
<em />
<em />
<em />
We start with the expression at the left of the equation.
We can combine the terms as:
![\begin{gathered} \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}} \\ \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D-%5Cfrac%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%20%5C%5C%20%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%5Ccdot%5Cfrac%7B%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D-%5Cfrac%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%5Ccdot%5Cfrac%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%20%5C%5C%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29-%282-%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%20%5Cend%7Bgathered%7D)
We can now apply the distributive property for the both the numerator and denominator. We can see also that the denominator is the expansion of the difference of squares:
![\begin{gathered} \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2})^2-(\sqrt[]{2-\sqrt[]{3}}))^2} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})+(\sqrt[]{3}-2)\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{2^{}-(2-\sqrt[]{3})^{}} \\ \frac{\sqrt[]{2}\cdot(2+\sqrt[]{3})-\sqrt[]{2-\sqrt[]{3}}\cdot(2+\sqrt[]{3})+\sqrt[]{2}\cdot(\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}\cdot(\sqrt[]{3}-2)}{2-2+\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2+\sqrt[]{3}+\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}(-2-\sqrt[]{3}+\sqrt[]{3}-2)}{\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2\sqrt[]{3})+\sqrt[]{2-\sqrt[]{3}}(-4)}{\sqrt[]{3}} \\ 2\sqrt[]{2}-4\frac{\sqrt[]{2-\sqrt[]{3}}}{\sqrt[]{3}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29-%282-%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%29%5E2-%28%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%29%5E2%7D%20%5C%5C%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%2B%28%5Csqrt%5B%5D%7B3%7D-2%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B2%5E%7B%7D-%282-%5Csqrt%5B%5D%7B3%7D%29%5E%7B%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%5Ccdot%282%2B%5Csqrt%5B%5D%7B3%7D%29-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%5Ccdot%282%2B%5Csqrt%5B%5D%7B3%7D%29%2B%5Csqrt%5B%5D%7B2%7D%5Ccdot%28%5Csqrt%5B%5D%7B3%7D-2%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%5Ccdot%28%5Csqrt%5B%5D%7B3%7D-2%29%7D%7B2-2%2B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%282%2B%5Csqrt%5B%5D%7B3%7D%2B%5Csqrt%5B%5D%7B3%7D-2%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%28-2-%5Csqrt%5B%5D%7B3%7D%2B%5Csqrt%5B%5D%7B3%7D-2%29%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%282%5Csqrt%5B%5D%7B3%7D%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%28-4%29%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%202%5Csqrt%5B%5D%7B2%7D-4%5Cfrac%7B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5Cend%7Bgathered%7D)
We then can continue rearranging this as: