<em><u>Question:</u></em>
Hector has a floor plan showing his new house. On the floor plan, his bedroom is 3 inches wide and 3 1/2 inches long. The scale of the floor plan is 1/4 inch = 1 foot. What is the actual length of Hector’s room?
<em><u>Answer:</u></em>
The actual length of Hector room is 14 foot
<em><u>Solution:</u></em>
Given that, On the floor plan, his bedroom is 3 inches wide and
inches long
<em><u>The scale of floor plan is given as:</u></em>
![\frac{1}{4} \text{ inch} = 1 \text{ foot }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D%20%5Ctext%7B%20inch%7D%20%3D%201%20%5Ctext%7B%20foot%20%7D)
Therefore,
![1 \text{ inch } = 4 \text{ foot}](https://tex.z-dn.net/?f=1%20%5Ctext%7B%20inch%20%7D%20%3D%204%20%5Ctext%7B%20foot%7D)
To find: Actual length of floor
From given question,
![length = 3\frac{1}{2} \text{ inches}](https://tex.z-dn.net/?f=length%20%3D%203%5Cfrac%7B1%7D%7B2%7D%20%5Ctext%7B%20inches%7D)
Converting the mixed fraction to improper fraction,
![length = \frac{2 \times 3 + 1}{2} = \frac{7}{2} \text{ inches }](https://tex.z-dn.net/?f=length%20%3D%20%5Cfrac%7B2%20%5Ctimes%203%20%2B%201%7D%7B2%7D%20%3D%20%5Cfrac%7B7%7D%7B2%7D%20%5Ctext%7B%20inches%20%7D)
Since, 1 inch = 4 foot
![\frac{7}{2} \text{ inches } = \frac{7}{2} \times 4 \text{ foot } = 14 \text{ foot }](https://tex.z-dn.net/?f=%5Cfrac%7B7%7D%7B2%7D%20%5Ctext%7B%20inches%20%7D%20%3D%20%5Cfrac%7B7%7D%7B2%7D%20%5Ctimes%204%20%5Ctext%7B%20foot%20%7D%20%3D%2014%20%5Ctext%7B%20foot%20%7D)
Thus actual length of Hector room is 14 foot
I multiplied $15 by 230% and then added my answer(which was 34.5) because subtracting it wasn't an option and got $49.50
I’m guessing 2 cups or something idk
Answer: E,C and D
Step-by-step explanation:
a(x+1)(x-1)+b(x-2)(x+1)+(x+1)^2=9x^2-x-10
(x+1)(a(x-1)+b(x-2)+(x+1))=(x+1)(9x-10)
a(x-1)+b(x-2)+x+1=9x-10
Now this equation is much simpler!
(a+b)x-a-2b+x+1=9x-10
(a+b)x-a-2b=8x-11
(a+b-8)x-a-2b-11=0
a+b-8=(a+2b-11)/x
I can't solve it 3 variables and 1 equations means infinite answers so yea.