1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
3 years ago
13

Calculus helpppppppppppppppp

Mathematics
1 answer:
frozen [14]3 years ago
3 0

Answer:

\displaystyle y' = \frac{5x^2 + 3}{3(1 + x^2)^\bigg{\frac{2}{3}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Algebra II</u>

  • Logarithms and Natural Logs
  • Logarithmic Property [Multiplying]:                                                                 \displaystyle log(ab) = log(a) + log(b)
  • Logarithmic Property [Exponential]:                                                                \displaystyle log(a^b) = b \cdot log(a)

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:                                                              \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                            \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Logarithmic Derivative:                                                                                                \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Implicit Differentiation

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = x\sqrt[3]{1 + x^2}<em />

<em />

<u>Step 2: Rewrite</u>

  1. [Equality Property] ln both sides:                                                                     \displaystyle lny = ln(x\sqrt[3]{1 + x^2})
  2. Logarithmic Property [Multiplying]:                                                                 \displaystyle lny = ln(x) + ln(\sqrt[3]{1 + x^2})
  3. Exponential Rule [Root Rewrite]:                                                                     \displaystyle lny = ln(x) + ln \bigg[ (1 + x^2)^\bigg{\frac{1}{3}} \bigg]
  4. Logarithmic Property [Exponential]:                                                                \displaystyle lny = ln(x) + \frac{1}{3}ln(1 + x^2)

<u>Step 3: Differentiate</u>

  1. ln Derivative [Implicit Differentiation]:                                                             \displaystyle \frac{d}{dx}[lny] = \frac{d}{dx} \bigg[ ln(x) + \frac{1}{3}ln(1 + x^2) \bigg]
  2. Rewrite [Derivative Property - Addition]:                                                        \displaystyle \frac{d}{dx}[lny] = \frac{d}{dx}[ln(x)] + \frac{d}{dx} \bigg[ \frac{1}{3}ln(1 + x^2) \bigg]
  3. Rewrite [Derivative Property - Multiplied Constant]:                                      \displaystyle \frac{d}{dx}[lny] = \frac{d}{dx}[ln(x)] + \frac{1}{3}\frac{d}{dx}[ln(1 + x^2)]
  4. ln Derivative [Chain Rule]:                                                                                \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{1}{3} \bigg( \frac{1}{1 + x^2} \bigg) \cdot \frac{d}{dx}[(1 + x^2)]
  5. Rewrite [Derivative Property - Addition]:                                                        \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{1}{3} \bigg( \frac{1}{1 + x^2} \bigg) \cdot \bigg( \frac{d}{dx}[1] + \frac{d}{dx}[x^2] \bigg)
  6. Basic Power Rule]:                                                                                           \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{1}{3} \bigg( \frac{1}{1 + x^2} \bigg) \cdot (2x^{2 - 1})
  7. Simplify:                                                                                                             \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{1}{3} \bigg( \frac{1}{1 + x^2} \bigg) \cdot 2x
  8. Multiply:                                                                                                             \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{2x}{3(1 + x^2)}
  9. [Multiplication Property of Equality] Isolate <em>y'</em>:                                                \displaystyle y' = y \bigg[ \frac{1}{x} + \frac{2x}{3(1 + x^2)} \bigg]
  10. Substitute in <em>y</em>:                                                                                                  \displaystyle y' = x\sqrt[3]{1 + x^2} \bigg[ \frac{1}{x} + \frac{2x}{3(1 + x^2)} \bigg]
  11. [Brackets] Add:                                                                                                 \displaystyle y' = x\sqrt[3]{1 + x^2} \bigg[ \frac{5x^2 + 3}{3x(1 + x^2)} \bigg]
  12. Multiply:                                                                                                             \displaystyle y' = \frac{(5x^2 + 3)\sqrt[3]{1 + x^2}}{3(1 + x^2)}
  13. Simplify [Exponential Rule - Root Rewrite]:                                                    \displaystyle y' = \frac{5x^2 + 3}{3(1 + x^2)^\bigg{\frac{2}{3}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Implicit Differentiation

Book: College Calculus 10e

You might be interested in
Once you reach the last step of a maths equation which shows <br>-8k = 8k . what is k ?
Sveta_85 [38]

Answer:

<em>k = 0</em>

Step-by-step explanation:

-8k = 8k

Add 8k to both sides.

0 = 16k

Divide both sides by 16.

0 = k

k = 0

3 0
4 years ago
Read 2 more answers
What is the last digit of
yKpoI14uk [10]

Step-by-step explanation:

When a number is multiplied by 5, the last digit of the product must be 0 (mod 5).

=> Last digit = 0 or 5.

Since 0 is not an option here, the answer must be 5. (C)

4 0
3 years ago
Read 2 more answers
M^2/n^2 is equivalent to ____
Mkey [24]
M^2 × n^(-2) ........
5 0
3 years ago
Are 7 and 42 relatively prime
Iteru [2.4K]
7 is a prime number, 72 is not a prime number.
Hope this helped!:)

8 0
3 years ago
A simple random sample of 32 men from a normally distributed population results in a standard deviation of 12.9 beats per minute
krok68 [10]

Answer:

Null Hypothesis, H0 = The pulse rates of men have a standard deviation equal to 10 beats per minute

Alternate Hypothesis, H1 = The pulse rates of men do not have a standard deviation equal to 10 beats per minute

Step-by-step explanation:

The null hypothesis is basically the problem statement i.e

Pulse rates of men have a standard deviation equal to 10 beats per minute

Hence, H0 = The pulse rates of men have a standard deviation equal to 10 beats per minute

The alternate hypothesis will contradict or negate the null hypothesis i.e

H1 = The pulse rates of men do not have a standard deviation equal to 10 beats per minute

4 0
3 years ago
Other questions:
  • A graph thAt has a finite or limited number of data points is
    12·2 answers
  • . The table shows the number of miles driven over time.
    8·1 answer
  • I think of a number, double it, and subtract two. I get nine. What is the number I began with?
    12·1 answer
  • The amount of money spent on a pizza for club activities varies directly with the number of pizzas bought. If $135 will pay for
    10·1 answer
  • Which of the following represents a function?
    7·1 answer
  • Geometry help please :(
    9·1 answer
  • The edge roughness of slit paper products increases as knife blades wear. Only 2% of products slit with new blades have rough ed
    8·1 answer
  • A contest gives out prizes for first, second, and third place. First place is $500 more than double third place. Second place is
    11·1 answer
  • A minor league pitcher gives up a hit on 20% of his pitches. How many hits does his give up after 10 pitches?
    6·1 answer
  • Jenny, Keith, and Joanna participated in a mini-
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!