1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
3 years ago
13

Calculus helpppppppppppppppp

Mathematics
1 answer:
frozen [14]3 years ago
3 0

Answer:

\displaystyle y' = \frac{5x^2 + 3}{3(1 + x^2)^\bigg{\frac{2}{3}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Algebra II</u>

  • Logarithms and Natural Logs
  • Logarithmic Property [Multiplying]:                                                                 \displaystyle log(ab) = log(a) + log(b)
  • Logarithmic Property [Exponential]:                                                                \displaystyle log(a^b) = b \cdot log(a)

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:                                                              \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                            \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Logarithmic Derivative:                                                                                                \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Implicit Differentiation

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = x\sqrt[3]{1 + x^2}<em />

<em />

<u>Step 2: Rewrite</u>

  1. [Equality Property] ln both sides:                                                                     \displaystyle lny = ln(x\sqrt[3]{1 + x^2})
  2. Logarithmic Property [Multiplying]:                                                                 \displaystyle lny = ln(x) + ln(\sqrt[3]{1 + x^2})
  3. Exponential Rule [Root Rewrite]:                                                                     \displaystyle lny = ln(x) + ln \bigg[ (1 + x^2)^\bigg{\frac{1}{3}} \bigg]
  4. Logarithmic Property [Exponential]:                                                                \displaystyle lny = ln(x) + \frac{1}{3}ln(1 + x^2)

<u>Step 3: Differentiate</u>

  1. ln Derivative [Implicit Differentiation]:                                                             \displaystyle \frac{d}{dx}[lny] = \frac{d}{dx} \bigg[ ln(x) + \frac{1}{3}ln(1 + x^2) \bigg]
  2. Rewrite [Derivative Property - Addition]:                                                        \displaystyle \frac{d}{dx}[lny] = \frac{d}{dx}[ln(x)] + \frac{d}{dx} \bigg[ \frac{1}{3}ln(1 + x^2) \bigg]
  3. Rewrite [Derivative Property - Multiplied Constant]:                                      \displaystyle \frac{d}{dx}[lny] = \frac{d}{dx}[ln(x)] + \frac{1}{3}\frac{d}{dx}[ln(1 + x^2)]
  4. ln Derivative [Chain Rule]:                                                                                \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{1}{3} \bigg( \frac{1}{1 + x^2} \bigg) \cdot \frac{d}{dx}[(1 + x^2)]
  5. Rewrite [Derivative Property - Addition]:                                                        \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{1}{3} \bigg( \frac{1}{1 + x^2} \bigg) \cdot \bigg( \frac{d}{dx}[1] + \frac{d}{dx}[x^2] \bigg)
  6. Basic Power Rule]:                                                                                           \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{1}{3} \bigg( \frac{1}{1 + x^2} \bigg) \cdot (2x^{2 - 1})
  7. Simplify:                                                                                                             \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{1}{3} \bigg( \frac{1}{1 + x^2} \bigg) \cdot 2x
  8. Multiply:                                                                                                             \displaystyle \frac{y'}{y} = \frac{1}{x} + \frac{2x}{3(1 + x^2)}
  9. [Multiplication Property of Equality] Isolate <em>y'</em>:                                                \displaystyle y' = y \bigg[ \frac{1}{x} + \frac{2x}{3(1 + x^2)} \bigg]
  10. Substitute in <em>y</em>:                                                                                                  \displaystyle y' = x\sqrt[3]{1 + x^2} \bigg[ \frac{1}{x} + \frac{2x}{3(1 + x^2)} \bigg]
  11. [Brackets] Add:                                                                                                 \displaystyle y' = x\sqrt[3]{1 + x^2} \bigg[ \frac{5x^2 + 3}{3x(1 + x^2)} \bigg]
  12. Multiply:                                                                                                             \displaystyle y' = \frac{(5x^2 + 3)\sqrt[3]{1 + x^2}}{3(1 + x^2)}
  13. Simplify [Exponential Rule - Root Rewrite]:                                                    \displaystyle y' = \frac{5x^2 + 3}{3(1 + x^2)^\bigg{\frac{2}{3}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Implicit Differentiation

Book: College Calculus 10e

You might be interested in
Tell weather each equation has one, zero, or infinitely many solutions. -(2x + 2) - 1 = -x - (x + 3)
Anestetic [448]
-(2x+2)-1=-x-(x+3) \\&#10;-2x-2-1=-x-x-3 \\&#10;-2x-3=-2x-3 \\&#10;0=0 \\&#10;always \ true \\ \\&#10;\boxed{\hbox{infinitely many solutions}}
7 0
3 years ago
Devin's DVD case has 3 rows of slots, but 5 slots are broken.If x equals the number of slots in a row explain how the expression
Paul [167]

Answer:

The total number of unbroken / working slots

Step-by-step explanation:

Given that Devin's DVD case has 3 rows of slots, but 5 slots are broken

Also given that the number of slots in a row is x

1 row has x slots

3 rows has y slots

on cross multiplication we get y = 3x

ie there are a total of 3x slots in the 3 rows

Given that out of these 3x slots 5 . of the slots are broken

Therefore the total number of working slots = total number of slots - number of slots which are broken

total number of working slots are = 3x - 5

Therefore the given expression is the number of working / good slots

6 0
3 years ago
Instructions: Find the missing side. Round your answer to the nearest tenth.<br> 54°<br> 29
Gemiola [76]

Answer:

x = 23.5

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

sin theta = opp / hyp

sin 54 = x / 29

29 sin 54 = x

x=23.46149

To the nearest tenth

x = 23.5

6 0
3 years ago
(-2 √(-49)(5 √(-100)
Tamiku [17]

Answer:

The answer is... 700

4 0
3 years ago
HELP I NEED HELP ASAP HELP I NEED HELP ASAP HELP I NEED HELP ASAP HELP I NEED HELP ASAP
Katena32 [7]

Answer:

The equation is ;

4x - y = 13

Step-by-step explanation:

The general equation of a straight line is;

y = mx + b

where m is the slope and b is the y-intercept

from what we are given, let us write the second equation in the general form

x + 4y = 10

4y = -x + 20

y = -1/4x + 20/4

y = -1/4x + 5

mathematically, when two lines are perpendicular, the product of their slope is -1

So for the second line with slope m2

m2 * -1/4 = -1

m2 = 4

So, using the general form, we have the equation as;

y = 4x + b

To get the value of b, we substitute the coordinates of the given point (3,-1)

-1 = 4(3) + b

-1 = 12 + b

b = -1-12

b = -13

So the equation is;

y = 4x - 13 which can be rewritten as;

4x-y = 13

6 0
3 years ago
Other questions:
  • Jake goes to School every 4 days and private School every 6 days. If he goes to both on October 3rd, on what date will he go to
    11·1 answer
  • A is (1,7) and B is (10,3) workout the length AB and give your answer to 3 significant places
    8·1 answer
  • isabelle is mixing red paint with blue paint to make purple paint. she adds of a fluid ounce of red to of a fluid ounce of blue
    9·1 answer
  • 1/4 N + 15<br> What is the variable?
    9·2 answers
  • Two of the zeros of g(x) are specifically listed in the table. What are those two zeros? Then, what is the multiplicity of each
    7·1 answer
  • I've got 5 questions and I'm very stuck so I yall can pls HELP and answer them for me pls, thank you
    7·1 answer
  • Pls help me
    6·1 answer
  • PLZ HELP What is the linear function equation represented by the graph?<br> f(x)=
    10·1 answer
  • Hey can someone please help me!!???
    15·1 answer
  • Fix the inequality below to correctly show the domain of<br> the function.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!