Answer:
i think the answer is 72
Step-by-step explanation:
This seems to be referring to a particular construction of the perpendicular bisector of a segment which is not shown. Typically we set our compass needle on one endpoint of the segment and compass pencil on the other and draw the circle, and then swap endpoints and draw the other circle, then the line through the intersections of the circles is the perpendicular bisector.
There aren't any parallel lines involved in the above described construction, so I'll skip the first one.
2. Why do the circles have to be congruent ...
The perpendicular bisector is the set of points equidistant from the two endpoints of the segment. Constructing two circles of the same radius, centered on each endpoint, guarantees that the places they meet will be the same distance from both endpoints. If the radii were different the meets wouldn't be equidistant from the endpoints so wouldn't be on the perpendicular bisector.
3. ... circles of different sizes ...
[We just answered that. Let's do it again.]
Let's say we have a circle centered on each endpoint with different radii. Any point where the two circles meet will then be a different distance from one endpoint of the segment than from the other. Since the perpendicular bisector is the points that are the same distance from each endpoint, the intersection of circles with different radii isn't on it.
4. ... construct the perpendicular bisector ... a different way?
Maybe what I first described is different; there are no parallel lines.
Answer:
2
Step-by-step explanation:
There are two lines of symmetry and here I list them:
1) The first is a horizontal line that divides the square in to even parts such that the top part is the projection of the down one trough the symmetry line (and vice versa).
2) The second one is the vertical line that divides the square in two even sides. Note that this line will also divide both stars at half. The left side will be projected on the right one (and vice versa) trough the symmetry line.
A third line could be thought to be a diagonal between opposite vertices, but notice that the stars projection won't by symmetric in this case.
So, we only have 2 symmetry lines.
If the elevator stopped at the 18th floor and she got in and went 14 floors down and got off, she got off on the 4th floor
Answer: well, C is definitely correct so we can knock that off the board. D i am not so sure about considering that is the most impotant thing in trade so, the and would be D.
hope this helped you...
Step-by-step explanation: