Answer: The mean is greater than the median
when finding the mean then add the numbers then divide them by the amount of numbers there are when finding the median find the middle number and if there is no middle number divide the 2 and that should be your mean
Overall dimensions of the page in order to maximize the printing area is page should be 11 inches wide and 10 inches long .
<u>Step-by-step explanation:</u>
We have , A page should have perimeter of 42 inches. The printing area within the page would be determined by top and bottom margins of 1 inch from each side, and the left and right margins of 1.5 inches from each side. let's assume width of the page be x inches and its length be y inches So,
Perimeter = 42 inches
⇒ 
width of printed area = x-3 & length of printed area = y-2:
area = 

Let's find
:
=
, for area to be maximum
= 0
⇒ 
And ,

∴ Overall dimensions of the page in order to maximize the printing area is page should be 11 inches wide and 10 inches long .
The answer is 32
Solution for 40 is what percent of 125:
40:125*100 =
( 40*100):125 =
4000:125 = 32
Now we have: 40 is what percent of 125 = 32
Question: 40 is what percent of 125?
Percentage solution with steps:
Step 1: We make the assumption that 125 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$x.
Step 3: From step 1, it follows that $100\%=125$100%=125.
Step 4: In the same vein, $x\%=40$x%=40.
Step 5: This gives us a pair of simple equations:
$100\%=125(1)$100%=125(1).
$x\%=40(2)$x%=40(2).
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
$\frac{100\%}{x\%}=\frac{125}{40}$
100%
x%=
125
40
Step 7: Taking the inverse (or reciprocal) of both sides yields
$\frac{x\%}{100\%}=\frac{40}{125}$
x%
100%=
40
125
$\Rightarrow x=32\%$⇒x=32%
Therefore, $40$40 is $32\%$32% of $125$125.
Answer:
the answer is 3
Step-by-step explanation:
you piece of garbage im tryna help why u report me