Answer:
Step-by-step explanation:
b/c we know that these triangles both have equal sides... that is given that <u>ab</u> and<u> be</u> are the same length. and that <u>be </u>and <u>cd</u> are parallel , we know that they both are isosceles triangles and that the base angles are the same. The side on <u> ad </u>and<u> ae</u> have equal angles.
so we can make the equation
2a +56 = 180 (b/c we know that around a triangle it's 180°
2 a = 124
a = 62
so ∠ BAE = 62°
:)
Answer:
=========
<h2>Given</h2>
<h3>Line 1</h3>
<h3>Line 2</h3>
- Passing through the points (4, 3) and (5, - 3)
<h2>To find</h2>
- The value of k, if the lines are perpendicular
<h2>Solution</h2>
We know the perpendicular lines have opposite reciprocal slopes, that is the product of their slopes is - 1.
Find the slope of line 1 by converting the equation into slope-intercept from standard form:
<u><em>Info:</em></u>
- <em>standard form is ⇒ ax + by + c = 0, </em>
- <em>slope - intercept form is ⇒ y = mx + b, where m is the slope</em>
- 3x - ky + 7 = 0
- ky = 3x + 7
- y = (3/k)x + 7/k
Its slope is 3/k.
Find the slope of line 2, using the slope formula:
- m = (y₂ - y₁)/(x₂ - x₁) = (-3 - 3)/(5 - 4) = - 6/1 = - 6
We have both the slopes now. Find their product:
- (3/k)*(- 6) = - 1
- - 18/k = - 1
- k = 18
So when k is 18, the lines are perpendicular.
Answer:
The 99% confidence interval for the true population proportion of people with kids is (0.293, 0.547).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.
In which
z is the z-score that has a p-value of
.
Out of 100 people sampled, 42 had kids.
This means that
99% confidence level
So
, z is the value of Z that has a p-value of
, so
.
The lower limit of this interval is:
The upper limit of this interval is:
The 99% confidence interval for the true population proportion of people with kids is (0.293, 0.547).
Answer:
Find the mean of the sampling distribution of xC-xT
Calculate and interpret the standard deviation of the sampling distribution. Verify that the 10% condition is met.
Justify that the shape of the sampling distribution
Step-by-step explanation:
2.4 letters. Both distributions of word length are unimodal and skewed to the right. Independent random samples of 40 words