It looks like the given equation is
sin(2x) - sin(2x) cos(2x) = sin(4x)
Recall the double angle identity for sine:
sin(2x) = 2 sin(x) cos(x)
which lets us rewrite the equation as
sin(2x) - sin(2x) cos(2x) = 2 sin(2x) cos(2x)
Move everything over to one side and factorize:
sin(2x) - sin(2x) cos(2x) - 2 sin(2x) cos(2x) = 0
sin(2x) - 3 sin(2x) cos(2x) = 0
sin(2x) (1 - 3 cos(2x)) = 0
Then we have two families of solutions,
sin(2x) = 0 or 1 - 3 cos(2x) = 0
sin(2x) = 0 or cos(2x) = 1/3
[2x = arcsin(0) + 2nπ or 2x = π - arcsin(0) + 2nπ]
… … … or [2x = arccos(1/3) + 2nπ or 2x = -arccos(1/3) + 2nπ]
(where n is any integer)
[2x = 2nπ or 2x = π + 2nπ]
… … … or [2x = arccos(1/3) + 2nπ or 2x = -arccos(1/3) + 2nπ]
[x = nπ or x = π/2 + nπ]
… … … or [x = 1/2 arccos(1/3) + nπ or x = -1/2 arccos(1/3) + nπ]
Answer:
$2827.5
Step-by-step explanation:
Cost of each ticket = $32.50
The school choir bought 54 tickets for the Saturday concert and 33 tickets for the Sunday concert.
Cost for Saturday concert = 32.50 × 54
= $1755
Cost for sunday concert = 32.50 × 33
= $1072.5
Total cost = Cost for Saturday concert + Cost for Sunday concert
= $1755 + $1072.5
= $2827.5
Hence, he will pay $2827.5 in all for the tickets.
Answer:
The original price was $100
Step-by-step explanation:

Answer:
Simplify the radical by breaking the radicand up into a product of known factors, assuming positive real numbers.
−4√3b√5b