1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
3 years ago
10

Find the radius of convergence and the interval of convergence.

Mathematics
1 answer:
prohojiy [21]3 years ago
5 0

Answer:

Radius of Convergence: 2

Interval of Convergence: [-2, 2]

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}

<u>Calculus</u>

Series Convergence Tests

  • P-Series:                                                                                                            \displaystyle \sum \limit_{n = 1}^\infty \frac{1}{n^p}
  • Direct Comparison Test (DCT)
  • Alternating Series Test (AST)
  • Ratio Test:                                                                                                         \displaystyle  \lim_{n \to \infty} \bigg| \frac{a_{n + 1}}{a_n} \bigg|

Radius of Convergence (ROC)

  • Ratio Test
  • Interval bound

Interval of Convergence (IOC)

  • Testing endpoints

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \sum \limit_{n = 1}^\infty \frac{x^n}{2^n(n + 1)^2}

<u>Step 2: Find ROC</u>

<em>Apply Ratio Test</em>

  1. [Series] Set up [Ratio Test]:                                                                           \displaystyle  \lim_{n \to \infty} \bigg|\frac{x^{n + 1}}{2^{n + 1}(n + 2)^2} \cdot \frac{2^n(n + 1)^2}{x^n} \bigg|
  2. [Ratio Test] Rewrite exponentials [Exponential Rule - Multiplying]:           \displaystyle  \lim_{n \to \infty} \bigg|\frac{x^n \cdot x}{2^n \cdot 2(n + 2)^2} \cdot \frac{2^n(n + 1)^2}{x^n} \bigg|
  3. [Ratio Test] Simplify:                                                                                     \displaystyle  \lim_{n \to \infty} \bigg| \frac{x}{2(n + 2)^2} \cdot (n + 1)^2 \bigg|
  4. [Ratio Test] Multiply:                                                                                     \displaystyle  \lim_{n \to \infty} \bigg| \frac{x(n + 1)^2}{2(n + 2)^2} \bigg|
  5. [Ratio Test] Evaluate limit:                                                                             \displaystyle \bigg| \frac{x}{2} \bigg| < 1
  6. [Ratio Test] Isolate <em>x</em>:                                                                                     \displaystyle |x| < 2

<em>Our ROC is 2.</em>

<u>Step 3: Find IOC</u>

<em>Test endpoints</em>

  1. [ROC] Find interval bound:                                                                           \displaystyle -2 < x < 2

<em>x = -2</em>

  1. Substitute in <em>x</em> [Series]:                                                                                 \displaystyle \sum \limit_{n = 1}^\infty \frac{(-2)^n}{2^n(n + 1)^2}
  2. [Series] Rewrite [Exponential Rules - Multiplying]:                                     \displaystyle \sum \limit_{n = 1}^\infty \frac{(-1)^n2^n}{2^n(n + 1)^2}
  3. [Series] Simplify:                                                                                           \displaystyle \sum \limit_{n = 1}^\infty \frac{(-1)^n}{(n + 1)^2}

<em>Test convergence of modified series: Alternating Series Test</em>

  1. [AST] Condition 1 [Limit Test]:                                                                       \displaystyle  \lim_{n \to \infty} \frac{1}{(n + 1)^2} = 0 \ \checkmark
  2. [AST] Condition 2 [aₙ vs bₙ comparison]:                                                     \displaystyle \frac{1}{(n + 2)^2} \le \frac{1}{(n + 1)^2} \ \checkmark

<em>At x = -2, the series is convergent.</em>

∴ Current IOC is -2 ≤ x < 2 or [-2, 2); 2 undetermined

<em>x = 2</em>

  1. Substitute in <em>x</em> [Series]:                                                                                 \displaystyle \sum \limit_{n = 1}^\infty \frac{2^n}{2^n(n + 1)^2}
  2. [Series] Simplify:                                                                                           \displaystyle \sum \limit_{n = 1}^\infty \frac{1}{(n + 1)^2}

<em>Test convergence of modified series: Direct Comparison Test</em>

  1. [DCT] Condition 1 [Define comparing series]:                                             \displaystyle \sum \limit_{n = 1}^\infty \frac{1}{n^2}
  2. [DCT] Condition 1 [Test convergence of comparing series]:                     \displaystyle p = 2 > 1, \ \sum \limit_{n = 1}^\infty \frac{1}{n^2} \ \text{convergent by p-series}
  3. [DCT] Condition 2 [aₙ vs bₙ comparison]:                                                     \displaystyle \frac{1}{(n + 1)^2} \le \frac{1}{n^2} \ \checkmark

<em>At x = 2, the series is convergent. </em>

∴ IOC for  \displaystyle \sum \limit_{n = 1}^\infty \frac{x^n}{2^n(n + 1)^2}  is -2 ≤ x ≤ 2 or [-2, 2]

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations - Power Series (BC Only)

Book: College Calculus 10e

You might be interested in
For a crane to lift the beam shown to the​ right, the beam and the two support cables must form an isosceles triangle with heigh
Fittoniya [83]

Answer:

The total length of​ the two cables is 2\sqrt{145}\ units

Step-by-step explanation:

see the attached figure to better understand the problem

we know that

In the right triangle ABD

Applying the Pythagoras Theorem

AB^{2}=BD^{2}+AD^{2}

substitute the given values

AB^{2}=9^{2}+8^{2}

AB^{2}=145

AB=\sqrt{145}\ units

Remember that

AB=AC  ----> because ABC is an isosceles triangle

so

The total length of​ the two cables is equal to

AB+AC=2AB=2\sqrt{145}\ units

3 0
3 years ago
I think its D, am I correct? plzz answer quickly!
serg [7]
The answer is the second option:
6/h = 10/40
4 0
3 years ago
Answer four and five please
mr_godi [17]
You find out what you have to do to get three then one and so on
7 0
3 years ago
I need help with this question
scoray [572]
The answer is C hope that helps
5 0
4 years ago
True or False: A solution to a Linear Inequality is any point in the shaded<br> region?
jasenka [17]

Answer: True!

We know this is true because a linear inequality uses less than/greater than and less than or equal to/greater than or equal to. This means that as long as the answer fits into the given constraints (in a graph these constraints are shown as lines and dashed lines), it is true.

8 0
3 years ago
Other questions:
  • If I have 37 assinments total and have not done 6, what percent do I have done?
    11·1 answer
  • What is the median of 37 38 39 44 44 45 46 47 47 47 47 48 51 52 52 53 54
    10·2 answers
  • You have two exponential functions. One function has the formula g(x) = 5 ^x . The other function has the formula h(x) = 5^-x .
    5·2 answers
  • Find the circumference of the circle d = 6 ft.
    7·1 answer
  • Circle area of a radius of 3
    15·1 answer
  • Mr Gardner is making 6 treat bags . He has 185 chocolate covered raisins to share evenly among the treat bags
    7·1 answer
  • Solve the system of equations by adding. check your answer.​
    10·1 answer
  • ) Suppose that a subset of five balls will be randomly selected from an urn containing amber, blue, and green balls. (a) If the
    14·1 answer
  • Subtract. Write your answer in simplest form.<br><br> 6 3/4 - 2 3/20<br><br> I need a mixed number
    5·2 answers
  • Which of the values is equivalent to 5^–3? A) 1/15 B) 1/125 C) − 15 D) − 125
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!