Answer:
Condition A.
A rectangle with four right angles
There can be many quadrilaterals satisfying this condition.
Condition B.
A square with one side measuring 5 inches
There can be only one quadrilateral satisfying this condition.
Condition C.
A rhombus with one angle measuring 43°
There can be many quadrilaterals satisfying this condition.
Condition D.
A parallelogram with one angle measuring 32°
There can be many quadrilaterals satisfying this condition.
Condition E.
A parallelogram with one angle measuring 48° and adjacent sides measuring 6 inches and 8 inches.
There can be only one quadrilateral satisfying this condition.
Condition F.
A rectangle with adjacent sides measuring 4 inches and 3 inches.
There can be only one quadrilateral satisfying this condition
Step-by-step explanation:
<u>Given</u><u> </u><u>info:</u><u>-</u>If the radius of a right circular cylinder is doubled and height becomes 1/4 of the original height.
Find the ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder ?
<u>Explanation</u><u>:</u><u>-</u>
Let the radius of the right circular cylinder be r units
Let the radius of the right circular cylinder be h units
Curved Surface Area of the original right circular cylinder = 2πrh sq.units ----(i)
If the radius of the right circular cylinder is doubled then the radius of the new cylinder = 2r units
The height of the new right circular cylinder
= (1/4)×h units
⇛ h/4 units
Curved Surface Area of the new cylinder
= 2π(2r)(h/4) sq.units
⇛ 4πrh/4 sq.units
⇛ πrh sq.units --------(ii)
The ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder
⇛ πrh : 2πrh
⇛ πrh / 2πrh
⇛ 1/2
⇛ 1:2
Therefore the ratio = 1:2
The ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder is 1:2
Answer:
b
Step-by-step explanation:
<span>Find an equation for the line parallel to 2y+4x = 8 and goes through the point (-3,3). Write your answer in the form y=mx+b.</span>