Let s = number of student tickets and a = number of adult tichets;
We have the equation: s + a = 559 and s = 59 + a;
Then, we solve the equation: 59 + a + a = 559;
59 + 2a = 559;
2a = 500;
a = 500/2;
a = 250;
s = 59 + 250;
s = 309;
Step-by-step explanation:
m9

56
Answer:
f(0)=0
Step-by-step explanation:
The number in the parenthesis in a function are what you substitute for x, so do that for the problem:
f(x)=(1/2)(x) --> f(0)=(1/2)(0)
Then solve for f(0) by simplifying the other side of the equation:
f(0)=0
The new parking lot must hold twice as many cars as the previous parking lot. The previous parking lot could hold 56 cars. So this means the new parking lot must hold 2 x 56 = 112 cars
Let y represent the number of cars in each row, and x be the number of total rows in the parking lot. Since the number of cars in each row must be 6 less than the number of rows, we can write the equation as:
y = x - 6 (1)
The product of cars in each row and the number of rows will give the total number of cars. So we can write the equation as:
xy = 112 (2)
Using the above two equations, the civil engineer can find the number of rows he should include in the new parking lot.
Using the value of y from equation 1 to 2, we get:
x(x - 6) = 112 (3)
This equation is only in terms of x, i.e. the number of rows and can be directly solved to find the number of rows that must in new parking lot.
Answer:
Moscow is the warmer then othe