

- <u>Jan </u><u>purchased </u><u>1</u><u>4</u><u>0</u><u> </u><u>shares </u><u>of </u><u>stock </u><u>in </u><u>ABC </u><u>company </u><u>at </u><u>a </u><u>price </u><u>of </u><u>$</u><u>1</u><u>8</u><u>.</u><u>7</u><u>5</u><u> </u><u>per </u><u>share </u>
- <u>During </u><u>the </u><u>next </u><u>3</u><u> </u><u>days</u><u>, </u><u> </u><u>the </u><u>value </u><u>of </u><u>share </u><u>declined </u><u>by </u><u>$</u><u>1</u><u>.</u><u>0</u><u>0</u><u> </u><u>,</u><u> </u><u>$</u><u>1</u><u>.</u><u>7</u><u>5</u><u> </u><u>and </u><u>$</u><u>1</u><u>.</u><u>5</u><u>0</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>a </u><u>share </u><u>of </u><u>ABC </u><u>stock </u><u>at </u><u>the </u><u>end </u><u>of </u><u>3</u><u> </u><u>days </u>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
Cost of 1 share of ABC company = $18.75
<u>Therefore</u><u>, </u>
Cost of 140 shares purchased by Jan in the ABC company


<u>Now</u><u>, </u>
For next 3 days, the value of share declined


<u>Therefore</u><u>, </u>
The value of shares after 3 days will be



Hence, The value of share after 3 days will be $18.75 .
Answer:
<h2>6 unit cubes</h2>
Step-by-step explanation:
<em>Look at the picture.</em>
Step-by-step explanation:
Lets consider the unknown number as x
according to the question,
6-x= 5(x+2)
6-x= 5x+10
-x-5x=10-6
-6x=4
x=4/-6= 2/-3
x= -2/3
<em>hope this helps </em>
<em>please mark me as brainliest.</em>
Answer:
Thus, the statement is False!
Step-by-step explanation:
When the domain of a function has an infinite number of values, the range may not always have an infinite number of values.
For example:
Considering a function

Its domain is the set of all real numbers because it has an infinite number of possible domain values.
But, its range is a single number which is 5. Because the range of a constant function is a constant number.
Therefore, the statement ''When the domain of a function has an infinite number of values, the range always has an infinite number of values'' is FALSE.
Thus, the statement is False!