Y= 2/3 x -2
Hope this helps
<span>12.3
Volume function: v(x) = ((18-x)(x-1)^2)/(4pi)
Since the perimeter of the piece of sheet metal is 36, the height of the tube created will be 36/2 - x = 18-x.
The volume of the tube will be the area of the cross section multiplied by the height. The area of the cross section will be pi r^2 and r will be (x-1)/(2pi). So the volume of the tube is
v(x) = (18-x)pi((x-1)/(2pi))^2
v(x) = (18-x)pi((x-1)^2/(4pi^2))
v(x) = ((18-x)(x-1)^2)/(4pi)
The maximum volume will happen when the value of the first derivative is zero. So calculate the first derivative:
v'(x) = (x-1)(3x - 37) / (4pi)
Convert to quadratic equation.
(3x^2 - 40x + 37)/(4pi) = 0
3/(4pi)x^2 - (10/pi)x + 37/(4pi) = 0
Now calculate the roots using the quadratic formula with a = 3/(4pi), b = -10/pi, and c = 37/(4pi)
The roots occur at x = 1 and x = 12 1/3. There are the points where the slope of the volume equation is zero. The root of 1 happens just as the volume of the tube is 0. So the root of 12 1/3 is the value you want where the volume of the tube is maximized. So the answer to the nearest tenth is 12.3</span>
Point-slope form of a line: we need a point (x₀,y₀) and the slope "m".
y-y₀=m(x-x₀)
slope intercept form :
y=m+b
m=slope
If the line is parallel to y=2/3 x-0, the line will have the same slope, therefore the slope will be: 2/3.
Data:
(8,4)
m=2/3
y-y₀=m(x-x₀)
y-4=2/3(x-8)
y-4=2/3 x-16/3
y=2/3 x-16/3+4
y=2/3 x-4/3 (slope intercept form)
Answer: The equation of the line would be: y=2/3 x-4/3.
if we have the next slope "m",then the perendicular slope will be:
m´=-1/m
We have this equation: y=2/3 x+0; the slope is: m=2/3.
The perpendicular slope will be: m`=-1/(2/3)=-3/2
And the equation of the perpendicular line to : y=2/3 x+0, given the point (8,4) will be:
y-y₀=m(x-x₀)
y-4=-3/2 (x-8)
y-4=-3/2 x+12
y=-3/2x + 12+4
y=-3/2x+16
answer: the perpendicular line to y=2/3 x+0 , given the point (8,4) will be:
y=-3/2 x+16