He has 2.3 packs left. So he has 2 packs and 2 stickers so it would be 2 2/6
Following are the dependent variables:
<em>1. The amount of water that each orchard receives.</em>
<em>2. The species of trees in the orchard.</em>
Reason:
The exercise scientist is looking for the effects of a chemical between an apple crop to which it is administered and another to which it is not, 4 options are presented, of which it is essential to count as a variable the amount of water each Orchard and tree species in the orchard, since they can generate alterations in the results, the other two variables of the exercise such as number of apples and size of the orchards are not significant and their variations do not affect the scientist's objective.
Learn more about Dependent Variable on:
brainly.com/question/1670595
#SPJ4
The problem is basically asking you _ x 4 = 50, so, what is 1/4 of 50? (12.5)
Check the picture below. so, that'd be the triangle's sides hmmm so let's use Heron's Area formula for it.
![~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{15}~,~\stackrel{y_2}{15}) ~\hfill a=\sqrt{[ 15- 10]^2 + [ 15- 5]^2} \\\\\\ ~\hfill \boxed{a=\sqrt{125}} \\\\\\ (\stackrel{x_1}{15}~,~\stackrel{y_1}{15})\qquad (\stackrel{x_2}{30}~,~\stackrel{y_2}{9}) ~\hfill b=\sqrt{[ 30- 15]^2 + [ 9- 15]^2} \\\\\\ ~\hfill \boxed{b=\sqrt{261}}](https://tex.z-dn.net/?f=~%5Chfill%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20distance%20between%202%20points%7D%7D%7Bd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%7D~%5Chfill~%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B10%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B15%7D~%2C~%5Cstackrel%7By_2%7D%7B15%7D%29%20~%5Chfill%20a%3D%5Csqrt%7B%5B%2015-%2010%5D%5E2%20%2B%20%5B%2015-%205%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Ba%3D%5Csqrt%7B125%7D%7D%20%5C%5C%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B15%7D~%2C~%5Cstackrel%7By_1%7D%7B15%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B30%7D~%2C~%5Cstackrel%7By_2%7D%7B9%7D%29%20~%5Chfill%20b%3D%5Csqrt%7B%5B%2030-%2015%5D%5E2%20%2B%20%5B%209-%2015%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Bb%3D%5Csqrt%7B261%7D%7D)
![(\stackrel{x_1}{30}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{10}~,~\stackrel{y_2}{5}) ~\hfill c=\sqrt{[ 10- 30]^2 + [ 5- 9]^2} \\\\\\ ~\hfill \boxed{c=\sqrt{416}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%28%5Cstackrel%7Bx_1%7D%7B30%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B10%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%20~%5Chfill%20c%3D%5Csqrt%7B%5B%2010-%2030%5D%5E2%20%2B%20%5B%205-%209%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Bc%3D%5Csqrt%7B416%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=\sqrt{125}\\ b=\sqrt{261}\\ c=\sqrt{416}\\ s\approx 23.87 \end{cases} \\\\\\ A\approx\sqrt{23.87(23.87-\sqrt{125})(23.87-\sqrt{261})(23.87-\sqrt{416})}\implies \boxed{A\approx 90}](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D%5Csqrt%7B125%7D%5C%5C%20b%3D%5Csqrt%7B261%7D%5C%5C%20c%3D%5Csqrt%7B416%7D%5C%5C%20s%5Capprox%2023.87%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%5Capprox%5Csqrt%7B23.87%2823.87-%5Csqrt%7B125%7D%29%2823.87-%5Csqrt%7B261%7D%29%2823.87-%5Csqrt%7B416%7D%29%7D%5Cimplies%20%5Cboxed%7BA%5Capprox%2090%7D)
Part A = She incorrectly add 1 (4/4) with 3/4, so instead of getting 7/4 she got 8/4.
Part B=She needs 28/4 (7) cups for 4 batches because 4/1x7/4=28/4.