Answer:


Explanation:
Hello,
Clausius Clapeyron equation is suitable in this case, since it allows us to relate the P,T,V behavior along the described melting process and the associated energy change. Such equation is:

As both the enthalpy and volume do not change with neither the temperature nor the pressure for melting processes, its integration turns out:

Solving for the enthalpy of fusion we obtain:

Finally the entropy of fusion is given by:

Best regards.
Answer:
Foam fight is a chemical change.
Explanation:
Please give me brainliest :)
1M KCl will require 25 mL to generate 100 mL of 0.25M KCl.
Molarity of a solution is defined as number of moles of solute present in 1000 mL of the solution.

So molarity is inversely proportional to the volume of the solution.
As solution is diluted. Molarity of the solution decreases.
1M of KCl means 1 mole of KCl in 1000 mL of the solution.
1M KCl is four times as concentrated as 0.25M KCl.
Therefore, to make 100 mL of 0.25M will require
of 1M KCl diluted to 100 mL of distilled water.
Easy alternative: Dilution formula

Where
are volume and concentration of first solution
and
are of second solution.

Learn more about dilution formula here,
brainly.com/question/18917740
#SPJ4
Answer:
k = -0.09165 years^(-1)
Explanation:
The exponential decay model of a radioactive isotope is generally given as;
A(t) = A_o(e^(kt))
Where;
A_o is quantity of isotope before decay, k is decay constant and A(t) is quantity after t years
We are given;
A_o = 5 kg
A(10) = 2kg
t = 10 years
Thus;
A(10) = 2 = 5(e^(10k))
Thus;
2 = 5(e^(10k))
2/5 = (e^(10k))
0.4 = (e^(10k))
In 0.4 = 10k
-0.9164 = 10k
k = -0.9164/10
k = -0.09165 years^(-1)