The formula for the radius r in terms of x . and for the maximum areas is x=2/
+4
Given that,
y forms a circle of radius r
y=2
r
r=y/2
(2-y)- forms Square Side x
(2-y) = 4x
x=(2-y)/4
Now Sum of Area's=Area of Square +Area of Circle
Sum =
r² + x²
Substitute the r and x values in above equation,
A(y)= y²/4
+(y-2)²/ 16
To maximize Area A(y)
A'(y)= 0
2y/4
+ 2(y-2)/16 =0
y/2
+ (y-2)/8 =0
y = 2
/
+4
Y max will be max, x to be maximum.
for maximum sum of areas,
x=2/
+4
Hence,The formula for the radius r in terms of x . and for the maximum areas is x=2/
+4
Learn more about Area :
brainly.com/question/28642423
#SPJ4
Answer: -7/3≤t≤5/3
Step-by-step explanation:
|2t + 2/3|≤4
2t + 2/3≤4
(2t + 2/3≤4)*3
6t+2≤12
6t≤10
t≤10/6
<u>t≤5/3</u>
2t + 2/3>=-4
(2t + 2/3>=-4)*3
6t + 2>=-12
6t>=-14
t>=-14/6
<u>t>=-7/3</u>
-7/3≤t≤5/3
Answer:
x = 104° because they are alternate interior angles and alternate interior angles are equal
Step-by-step explanation:
Answer:
u^2 +7u -8=0 where u = 3x+2
Step-by-step explanation:
(3x+2)^2 + 7(3x+2) - 8=0
Let 3x+2 = u
u^2 +7u -8=0