(i) x = 3
(ii) y = 6
<u>Explanation:</u>
The two polygons are similar.
The congruent angles are:
∠J ≅ ∠G
∠R ≅ ∠M
∠I ≅ ∠A
∠C ≅ ∠T
∠E ≅ ∠H
Proportional sides are:

(i) Value of x = ?

Putting the values from the figure

(ii) Value of y = ?

On putting the value we get:
![\frac{6}{12} = \frac{x^2-4}{y+4} \\\\6(y+4) = 12(x^2 - 4)\\\\6y + 24 = 12[(3)^2 - 4]\\\\6y + 24 = 12[ 9 - 4]\\\\6y + 24 = 60\\\\6y = 36\\\\y = 6](https://tex.z-dn.net/?f=%5Cfrac%7B6%7D%7B12%7D%20%3D%20%5Cfrac%7Bx%5E2-4%7D%7By%2B4%7D%20%5C%5C%5C%5C6%28y%2B4%29%20%3D%2012%28x%5E2%20-%204%29%5C%5C%5C%5C6y%20%2B%2024%20%3D%2012%5B%283%29%5E2%20-%204%5D%5C%5C%5C%5C6y%20%2B%2024%20%3D%2012%5B%209%20-%204%5D%5C%5C%5C%5C6y%20%2B%2024%20%3D%2060%5C%5C%5C%5C6y%20%3D%2036%5C%5C%5C%5Cy%20%3D%206)
Answer:
The GCF of 36 and 90 is 18
Ok so I’m assuming the question is how the tall is we need to find the Angle of the sun so
Student : 175
Shadow: 2.3
Hypotenuse: 175.0151136
Using -cos(175/175.0151136) we find the
Suns angle: .753 Above him/her
Our tree’s shadow:8.2
Using the suns angle we use cos(x
its 18 because if u add 18 to 34
The answer would be that Brook measured the distance between L and M