I think you forgot to add the attachment.
Answer:
D
Step-by-step explanation:
I hope this helps you out!
Check the picture below.
now, you can pretty much count the units off the grid for the segments ST and RU, so each is 7 units long, and are parallel, meaning that the other two segments are also parallel, and therefore the same length each.
so we can just find the length for hmmmm say SR, since SR = TU, TU is the same length,
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ S(\stackrel{x_1}{-2}~,~\stackrel{y_1}{1})\qquad R(\stackrel{x_2}{-5}~,~\stackrel{y_2}{5})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ SR=\sqrt{[-5-(-2)]^2+[5-1]^2}\implies SR=\sqrt{(-5+2)^2+(5-1)^2} \\\\\\ SR=\sqrt{(-3)^2+4^2}\implies SR=\sqrt{25}\implies SR=5](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AS%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20%0AR%28%5Cstackrel%7Bx_2%7D%7B-5%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%5B-5-%28-2%29%5D%5E2%2B%5B5-1%5D%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B%28-5%2B2%29%5E2%2B%285-1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%28-3%29%5E2%2B4%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B25%7D%5Cimplies%20SR%3D5)
sum all segments up, and that's perimeter.
Answer:
x = 27
Step-by-step explanation:
AC // DE
m∠ABD ≅ m∠BDE = 72°
m∠ADB + m∠BDE + m∠EDF = 180°
2x + 72° + 2x = 180°
4x = 108°
x = 27°
Answer:
243 in²
Step-by-step explanation:
Step 1. Calculate the<em> base and height </em>of the rectangle
We have two conditions:
(1) 2b+ 2h = 72 in
(2) b = 3h Substitute in (1)
2(3h) + 2h = 72 Remove parentheses
6h + 2h = 72 Combine like terms
8h = 72 Divide by 6
h = 9 in Substitute in(2)
b = 3 × 9
b = 27 in
Step 2. Calculate the area of the rectangle
A = bh
A = 27 × 9
A = 243 in²
The area of the rectangle is 243 in².