Answer:
x = 2 or
x = -7
Step-by-step explanation:
(x - 2)(x + 7) = 0
x - 2 = 0
Add 2 to both sides
x - 2 + 2 = 2 + 0
x = 2
OR
x + 7 = 0
Subtract 7 from both sides
x + 7 - 7 = 0-7
x = -7
Therefore
x = 2 or
x = -7
Answer:
Step-by-step explanation:
From the given information:
The uniform distribution can be represented by:

The function of the insurance is:

Hence, the variance of the insurance can also be an account forum.
![Var [I_{(x}) = E [I^2(x)] - [E(I(x)]^2](https://tex.z-dn.net/?f=Var%20%5BI_%7B%28x%7D%29%20%3D%20E%20%5BI%5E2%28x%29%5D%20-%20%5BE%28I%28x%29%5D%5E2)
here;
![E[I(x)] = \int f_x(x) I (x) \ sx](https://tex.z-dn.net/?f=E%5BI%28x%29%5D%20%3D%20%5Cint%20f_x%28x%29%20I%20%28x%29%20%5C%20sx)
![E[I(x)] = \dfrac{1}{1500} \int ^{1500}_{250{ (x- 250) \ dx](https://tex.z-dn.net/?f=E%5BI%28x%29%5D%20%3D%20%5Cdfrac%7B1%7D%7B1500%7D%20%5Cint%20%5E%7B1500%7D_%7B250%7B%20%28x-%20250%29%20%5C%20dx)


Similarly;
![E[I^2(x)] = \int f_x(x) I^2 (x) \ sx](https://tex.z-dn.net/?f=E%5BI%5E2%28x%29%5D%20%3D%20%5Cint%20f_x%28x%29%20I%5E2%20%28x%29%20%5C%20sx)
![E[I(x)] = \dfrac{1}{1500} \int ^{1500}_{250{ (x- 250)^2 \ dx](https://tex.z-dn.net/?f=E%5BI%28x%29%5D%20%3D%20%5Cdfrac%7B1%7D%7B1500%7D%20%5Cint%20%5E%7B1500%7D_%7B250%7B%20%28x-%20250%29%5E2%20%5C%20dx)


∴
![Var {I(x)} = 1250^2 \Big [ \dfrac{5}{18} - \dfrac{25}{144}]](https://tex.z-dn.net/?f=Var%20%7BI%28x%29%7D%20%3D%201250%5E2%20%5CBig%20%5B%20%5Cdfrac%7B5%7D%7B18%7D%20-%20%5Cdfrac%7B25%7D%7B144%7D%5D)
Finally, the standard deviation of the insurance payment is:


≅ 404
Basically, we need to find what has a probability of 2/9
Peanuts:6/6+4+3+5=6/18=1/3
Rasins:4/18=2/9
Cranberries:3/18=1/6
Chocolate chips:5/18
The answer should be raisins