Answer:
Midpoint = (3.5, 4.5)
Perpendicular bisector = y =
x + 
Step-by-step explanation:
[] We can solve this using the midpoint formula:
-> See attached
[] Plug-in our coordinates and solve:

[] Now we will find the slope to solve for the perpendicular bisector.
-> We will use slope-intercept form, see attached

-> The slopes of two perpendicular lines are negative reciprocals of each other, so
will be the slope of or perpendicular bisector
-> Now we can solve for the equation by using y – y1 = m ( x – x1), were y1 and x1 are the coordinates of our midpoint
y - 4.5 =
(x-3.5)
y - 4.5 =
x-
y =
x-
+ 4.5
y =
x + 
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
- Heather
Triangle JKL has vertices J(2,5), K(1,1), and L(5,2). Triangle QNP has vertices Q(-4,4), N(-3,0), and P(-7,1). Is (triangle)JKL
Tems11 [23]
Answer:
Yes they are
Step-by-step explanation:
In the triangle JKL, the sides can be calculated as following:
=> JK = 
=> JL = 
=> KL = 
In the triangle QNP, the sides can be calculate as following:
=> QN = ![\sqrt{[-3-(-4)]^{2} + (0-4)^{2} } = \sqrt{1^{2}+(-4)^{2} } = \sqrt{1+16}=\sqrt{17}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-3-%28-4%29%5D%5E%7B2%7D%20%2B%20%280-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B1%5E%7B2%7D%2B%28-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B1%2B16%7D%3D%5Csqrt%7B17%7D)
=> QP = ![\sqrt{[-7-(-4)]^{2} + (1-4)^{2} } = \sqrt{(-3)^{2}+(-3)^{2} } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-7-%28-4%29%5D%5E%7B2%7D%20%2B%20%281-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B%28-3%29%5E%7B2%7D%2B%28-3%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B9%2B9%7D%3D%5Csqrt%7B18%7D%20%3D%203%5Csqrt%7B2%7D)
=> NP = ![\sqrt{[-7-(-3)]^{2} + (1-0)^{2} } = \sqrt{(-4)^{2}+1^{2} } = \sqrt{16+1}=\sqrt{17}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-7-%28-3%29%5D%5E%7B2%7D%20%2B%20%281-0%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B%28-4%29%5E%7B2%7D%2B1%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B16%2B1%7D%3D%5Csqrt%7B17%7D)
It can be seen that QPN and JKL have: JK = QN; JL = QP; KL = NP
=> They are congruent triangles
To elaborate:
To do this problem, we assume that Mr. Sanchez is driving at a constant rate.
According to this information, he has driven 120 mi in 3 hr. To find how much he drives in 5 hr, we first have to find how many mi he drives in 1 hour. To do this, we divide 120 miles by 3 hours, since we assume that he managed to drive an equal amount in each hour.
120/3=40
Therefore Mr. Sanchez drove at a rate of 40 mph.
However, this isn't the final answer. 40 miles is the distance for one hour of driving. To find the distance for 5 hours, we have to multiply the distance by 5 as well.
40 times 5=200
In conclusion, Mr. Sanchez will drive 200 miles in 5 hours.
Answer:
There were 15 birds at the shelter on Monday
Step-by-step explanation: 15 birds x 5$ =75$ and 8 cats x 6$=48$ 75$ + 48$=123$
Answer:
A number line going from 27 to 37, open circle at 32, everything to the right is shaded
Step-by-step explanation:
-1/2p < -16
multiply each side by -2 (don't forget to switch inequality symbol)
p > 32