The given question is incorrect. The correct question is as follows.
If 20.0 g of
and 4.4 g of
are placed in a 5.00 L container at
, what is the pressure of this mixture of gases?
Explanation:
As we know that number of moles equal to the mass of substance divided by its molar mass.
Mathematically, No. of moles = 
Hence, we will calculate the moles of oxygen as follows.
No. of moles = 
Moles of
=
= 0.625 moles
Now, moles of 
= 0.1 moles
Therefore, total number of moles present are as follows.
Total moles = moles of
+ moles of 
= 0.625 + 0.1
= 0.725 moles
And, total temperature will be:
T = (21 + 273) K = 294 K
According to ideal gas equation,
PV = nRT
Now, putting the given values into the above formula as follows.
P =
= 
=
atm
= 3.498 atm
or, = 3.50 atm (approx)
Therefore, we can conclude that the pressure of this mixture of gases is 3.50 atm.
144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
<h3>What is Ideal Gas Law ? </h3>
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Presure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = temperature in Kelvin
Here,
P = 1 atm [At STP]
R = 0.0821 atm.L/mol.K
T = 273 K [At STP]
Now first find the number of moles
F₂ + CaBr₂ → CaF₂ + Br₂
Here 1 mole of F₂ reacts with 1 mole of CaBr₂.
So, 199.89 g CaBr₂ reacts with = 1 mole of F₂
1.28 g of CaBr₂ will react with = n mole of F₂

n = 0.0064 mole
Now put the value in above equation we get
PV = nRT
1 atm × V = 0.0064 × 0.0821 atm.L/mol.K × 273 K
V = 0.1434 L
V ≈ 144 mL
Thus from the above conclusion we can say that 144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
Learn more about the Ideal Gas here: brainly.com/question/20348074
#SPJ4
<span><span>Argon,</span><span>Carbon dioxide,</span><span>Neon,</span><span>Helium, and </span><span>Methane</span></span>
This is the definition of a DNA mutation.
Depending on which part of the genome is affected, the consequences of a mutation may vary. A mutation is said to be hereditary if the mutated genetic sequence is transmitted to the next generation (see germinal mutations). It is one of the elements of biodiversity and one of the many factors that may be involved in the evolution of the species.