Answer:
Explanation:
The electronic configuration of a lithium atom is 2.1 and that of a fluorine atom is 2.7
an atom of lithium donates an electron to an atom of fluorine to form an ionic compound. The transfer of the electron gives the lithium ion a net charge of +1, and the fluorine ion a net charge of -1.
Answer:
We have NH 4 and that's called the ammonium ion it also stays together.
Explanation:
Include:
- Adding cleanser makes the paperclip fall through the water to the base of the dish.
- Soap is a surfactant.
- Surfactants lessen the surface pressure of a fluid.
- The surface strain of water is the thing that upheld the paper cut.
Answer:
The empirical formula is SF6 (option E)
Explanation:
Step 1: Data given
Mass of sulfur = 3.21 grams
Mass of fluorine = 11.4 grams
Molar mass sulfur = 32.065 g/mol
Molar mass fluorine = 19.00 g/mol
Step 2: Calculate moles
Moles = mass /molar mass
Moles sulfur = 3.21 grams / 32.065 g/mol
Moles sulfur = 0.100 moles
Moles fluorine = 11.4 grams / 19.00 g/mol
Moles fluorine = 0.600 moles
Step 3: Calculate mol ratio
We divide by the smallest amount of moles
S: 0.100 / 0.100 = 1
F : 0.600 / 0.100 = 6
The empirical formula is SF6 (option E)
Answer:
Yes. Example: <u>Sulfur hexafluoride (SF₆) molecule</u>
Explanation:
According to the octet rule, elements tend to form chemical bonds in order to have <u>8 electrons in their valence shell</u> and gain the stable s²p⁶ electronic configuration.
However, this rule is generally followed by main group elements only.
Exception: <u>SF₆ molecule</u>
In this molecule, six fluorine atoms are attached to the central sulfur atom by single covalent bonds.
<u>Each fluorine atom has 8 electrons in their valence shells</u>. Thus, it <u>follows the octet rule.</u>
Whereas, there are <u>12 electrons around the central sulfur atom</u> in the SF₆ molecule. Therefore, <u>sulfur does not follow the octet rule.</u>
<u>Therefore, the SF₆ molecule is known as a </u><u>hypervalent molecule</u><u> or expanded-valence molecule.</u>