Given:
The equation is

To find:
The number of roots and discriminant of the given equation.
Solution:
We have,

The highest degree of given equation is 2. So, the number of roots is also 2.
It can be written as

Here,
.
Discriminant of the given equation is





Since discriminant is
, which is greater than 0, therefore, the given equation has two distinct real roots.
Answer:
Twelve tickets cost $30 --> True
Thirty tickets cost $12 --> False
Each additional costs $2.50 --> True
The table is a partial rep --> True
ordered pairs --> False
Step-by-step explanation:
Twelve tickets cost $30 --> True, you can literally see that in the table
Thirty tickets cost $12 --> False, 30 is not in the table so you don't have that information. Besides, $12 is an unlikely low value for so many tickets.
Each additional costs $2.50 --> True, you can see the difference in the TotalCost column to be consistently 2.50.
The table is a partial rep --> True, values below 11 are not shown for example.
ordered pairs --> False --> Then the x value should be first, e.g., (11, 27.50), since the cost y is a function of the number x.
79 ft/s = 0.0240792 km/s
0.0240792 x 60 = 1.444752 km/minute
<span>1.444752 x 60 = </span><span>86.68512 km/hour
</span>
Ans: 86.69 km/h
Answer:
Step-by-step explanation:
First and foremost, all quadratics have a domain of all real numbers (as long as we are not given only a portion of the graph, or one with endpoints. Our graph does not have endpoints, so it is assumed that the tails will continue to go down into negative infinity and at the same time, the x coordinates will keep growing as well.) Since our quadratic is upside down, it has a max. That means that none of the values on the graph will be above that point. All the values will be below that highest point (the highest y-value). Y-values indicate range, and since our highest y-value is at y = 2, then the range is
y ≤ 2