Answer:
D.
Step-by-step explanation:
Remember that the limit definition of a derivative at a point is:
![\displaystyle{\frac{d}{dx}[f(a)]= \lim_{x \to a}\frac{f(x)-f(a)}{x-a}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28a%29%5D%3D%20%5Clim_%7Bx%20%5Cto%20a%7D%5Cfrac%7Bf%28x%29-f%28a%29%7D%7Bx-a%7D%7D)
Hence, if we let f(x) be ln(x+1) and a be 1, this will yield:
![\displaystyle{\frac{d}{dx}[f(1)]= \lim_{x \to 1}\frac{\ln(x+1)-\ln(2)}{x-1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%281%29%5D%3D%20%5Clim_%7Bx%20%5Cto%201%7D%5Cfrac%7B%5Cln%28x%2B1%29-%5Cln%282%29%7D%7Bx-1%7D%7D)
Hence, the limit is equivalent to the derivative of f(x) at x=1, or f’(1).
The answer will thus be D.
The first one since the given measurements/guide is Side, Angle, Side
1. 5.50 + 0.15 * 45 = 12.25
2. 4 + 0.20 * 45 = 13
So the first option is slightly better, you can save 13-12.25= $0.75.
Answer:
Lateral surface area of pentagonal prism = 750 cm²
Step-by-step explanation:
Given information:
Height of pentagonal prism = 15 cm
Length of edge = 10 cm
Length of apothem = 16.8 cm
Find:
Lateral surface area of pentagonal prism
Computation:
Lateral surface area of pentagonal prism = 5(a)(h)
Lateral surface area of pentagonal prism = 5(10)(15)
Lateral surface area of pentagonal prism = 750 cm²